cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289382 a(n) = 2^n mod triangular(n).

Original entry on oeis.org

0, 1, 2, 6, 2, 1, 16, 4, 17, 34, 2, 40, 2, 4, 8, 120, 104, 1, 78, 46, 134, 70, 140, 16, 132, 121, 134, 30, 2, 94, 64, 400, 206, 429, 158, 334, 2, 4, 8, 616, 494, 1, 690, 346, 692, 142, 848, 64, 912, 1024, 8, 796, 797, 379, 1528, 4, 350, 178, 1418, 916, 2, 4, 512, 1056, 32, 2011
Offset: 1

Views

Author

Alex Ratushnyak, Jul 04 2017

Keywords

Examples

			a(6) = 2**6 mod (6*7/2) = 64 mod 21 = 1.
		

Crossrefs

Programs

  • Maple
    seq(2^n mod n*(n+1)/2, n=1..100); # Robert Israel, Jul 04 2017
  • Mathematica
    Table[Mod[2^n, n (n + 1)/2], {n, 66}] (* Michael De Vlieger, Jul 04 2017 *)
    PowerMod[2,#,(#(#+1))/2]&/@Range[70] (* Harvey P. Dale, Oct 12 2018 *)
  • PARI
    a(n) = lift(Mod(2, n*(n+1)/2)^n); \\ Michel Marcus, Jul 04 2017
  • Python
    for n in range(1,99): print(str(int(2**n % (n*(n+1)/2))), end=', ')
    

Formula

a(n) = A000079(n) mod A000217(n) = 2^n mod n*(n+1)/2.
a(n) = 1 for n>1 in A272934. - Michel Marcus, Jul 04 2017