A289397 Coefficients in expansion of (q*j(q))^(-1/24).
1, -31, 3809, -620190, 111669570, -21246138749, 4186228503780, -845058129488699, 173647689528542310, -36170751826552656600, 7615730581866678419370, -1617501058117655447210580, 346019784662582818549094159
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..424
Crossrefs
Programs
-
Mathematica
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(-1/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Formula
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(7/8), where c = 0.13397834215417716857261649901051678539339753563926756586381... = 2^(1/8) * exp(Pi/(8 * sqrt(3))) * sqrt(Pi) / (3^(1/8) * Gamma(1/8) * Gamma(1/3)^(3/4)). - Vaclav Kotesovec, Mar 05 2018, updated Mar 06 2018
a(n) * A106205(n) ~ c * exp(2*Pi*sqrt(3)*n) / n^2, where c = -sqrt(2-sqrt(2)) / (16*Pi). - Vaclav Kotesovec, Mar 06 2018