A106205
Expansion of (q*j(q))^(1/24) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 31, -2848, 413823, -68767135, 12310047967, -2309368876639, 447436508910495, -88755684988520798, 17924937024841839390, -3671642907594608226078, 760722183234128461061246, -159105706560247952472114973
Offset: 0
1 + 31*q - 2848*q^2 + 413823*q^3 - 68767135*q^4 + 12310047967*q^5 - 2309368876639*q^6 + ...
(q*j(q))^(k/24): this sequence (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/8) / (2*QPochhammer[-1, x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
-
{a(n)=if(n<0,0, polcoeff( (ellj(x+x^2*O(x^n))*x)^(1/24),n))}
A161361
Convolution square root of A000521.
Original entry on oeis.org
1, 372, 29250, -134120, 54261375, -6139293372, 854279148734, -128813964933000, 20657907916144515, -3469030105750871000, 603760629237519966018, -108124880417607682194048, 19820541224206810447813500
Offset: 0
a(2) = 29250 = 1/2 * (A000521(2) - 372^2) = 1/2 * (196884 - 138384) = 29250.
G.f. = 1 + 372*x + 29250*x^2 - 134120*x^3 + 54261375*x^4 - ...
G.f. = 1/q + 372*q + 29250*q^3 - 134120*q^5 + 54261375*q^7 + ...
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304(k=10),
A289305 (k=11), this sequence (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/2) / (4096 * QPochhammer[-1, x]^12), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( sqrt(x * (1 + 256*A)^3 / A), n))}; /* Michael Somos, May 03 2014 */
Original entry on oeis.org
1, 1488, 947304, 335950912, 72474624276, 9790124955552, 833107628914688, 45630592148400000, 1754954450906393538, 51062104386000089648, 1186840963302480101376, 22924552119951492244800, 378933532779364657975000
Offset: 0
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12),
A028512 (k=16),
A028513 (k=32),
A028514 (k=40), this sequence (k=48),
A288846 (k=72).
-
CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)
A288846
Expansion of (q*j)^3, where j is a modular function A000521.
Original entry on oeis.org
1, 2232, 2251260, 1355202240, 541778118390, 151522053809760, 30456116651640888, 4460775211418664960, 479919718908048515625, 38292247221915373896560, 2309356967925215526546564, 108570959012192293978767360, 4111854826236389868361040550
Offset: 0
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12),
A028512 (k=16),
A028513 (k=32),
A028514 (k=40),
A028515 (k=48), this sequence (k=72).
-
CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^3 + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A028512
Character of extremal vertex operator algebra of rank 16.
Original entry on oeis.org
1, 496, 69752, 2115008, 34670620, 394460000, 3499148224, 25817318016, 165011628166, 939112182480, 4853601292512, 23116070653888, 102602164703800, 428200065370144, 1692346392263680, 6371305129660032
Offset: 0
- G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
- G. Hoehn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (pdf, ps).
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12), this sequence (k=16),
A028513 (k=32),
A028514 (k=40),
A028515 (k=48).
-
CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^2 / (2*QPochhammer[-1, x])^16, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
Original entry on oeis.org
1, 992, 385520, 73424000, 7032770680, 330234251072, 9708251628992, 205208814844160, 3384709979113500, 45920987396301280, 531402725344000864, 5384625599438260096, 48726640432968418240, 399835655086212744000
Offset: 0
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12),
A028512 (k=16), this sequence (k=32),
A028514 (k=40),
A028515 (k=48).
-
CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)
Original entry on oeis.org
1, 1240, 635660, 173158720, 26866494270, 2390772025248, 123244340937400, 4235204881123840, 107367902876988285, 2147149471392237840, 35461233105160369124, 499800581310885326080, 6159994549959101077830
Offset: 0
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12),
A028512 (k=16),
A028513 (k=32), this sequence (k=40),
A028515 (k=48).
-
CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)
A305696
Coefficients of (q*(j(q)-744))^(-1/4) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 0, -49221, -5373440, 5840692110, 1317368987136, -769081921703395, -285861152927176704, 99587019847435059600, 58472021328782000084480, -11456674101843809483255526, -11455351916487867258761894400, 892125673948866841204086469705
Offset: 0
-
CoefficientList[Series[((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x)^(-1/4), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)
A299826
Coefficients in expansion of (q*j(q))^(-1/12) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, -62, 8579, -1476538, 276299401, -54140398258, 10925052030358, -2250028212438240, 470403050272649518, -99482921702360817662, 21231436164082720565341, -4564732260005808181200000, 987422026920066412423809840
Offset: 0
-
CoefficientList[Series[(2 * QPochhammer[-1, x])^2 / (65536 + x*QPochhammer[-1, x]^24)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 20 2018 *)
Showing 1-9 of 9 results.
Comments