A306236 a(n) is the smallest integer m > n with integer j > m makes n^2, m^2 and j^2 an arithmetic progression.
5, 10, 15, 20, 25, 30, 13, 40, 45, 50, 55, 60, 65, 26, 75, 80, 25, 90, 95, 100, 39, 110, 37, 120, 125, 130, 135, 52, 145, 150, 41, 160, 165, 50, 65, 180, 185, 190, 195, 200, 85, 78, 215, 220, 225, 74, 65, 240, 61, 250, 75, 260, 265, 270, 275, 104, 285, 290
Offset: 1
Keywords
Examples
a(1) = 5 because 1^2, 5^2 and 7^2 are an arithmetic progression.
Programs
-
Mathematica
Array[Block[{m = # + 2}, While[! IntegerQ@ Sqrt[2 m^2 - #^2], m += 2]; m] &, 58] (* Michael De Vlieger, Feb 15 2019 *)
-
PARI
a(n) = {m=n+2; while(issquare(2*m^2-n^2)==0, m=m+2); m;}
Formula
a(n) = sqrt((n^2 + A289398(n)^2)/2).
For positive integer k, a(2*k^2 - 1) = 2*k^2 + 2*k + 1.
a(n) <= 5*n.
a(k*n) = k*a(n) for all k not in A058529. - Jianing Song, Feb 15 2019
Comments