A289436 The arithmetic function v_1(n,4).
1, 1, 2, 1, 3, 2, 4, 3, 5, 3, 6, 3, 7, 5, 8, 4, 9, 5, 10, 7, 11, 6, 12, 6, 13, 9, 14, 7, 15, 8, 16, 11, 17, 10, 18, 9, 19, 13, 20, 10, 21, 11, 22, 15, 23, 12, 24, 14, 25, 17, 26, 13, 27, 15, 28, 19, 29, 15, 30, 15, 31, 21, 32, 16, 33, 17, 34, 23, 35
Offset: 2
Keywords
References
- J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
Links
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
Programs
-
Maple
a:= n-> n*max(seq((floor((d-2)/4)+1)/d, d=numtheory[divisors](n))): seq(a(n), n=2..100); # Alois P. Heinz, Jul 07 2017
-
Mathematica
a[n_]:=n*Max[Table[(Floor[(d - 2)/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* Indranil Ghosh, Jul 08 2017 *)
-
PARI
v(g,n,h)={my(t=0);fordiv(n,d,t=max(t,((d-1-gcd(d,g))\h + 1)*(n/d)));t} a(n)=v(1,n,4); \\ Andrew Howroyd, Jul 07 2017
-
Python
from sympy import divisors, floor def a(n): return int(n*max(int(floor((d - 2)/4) + 1)/d for d in divisors(n))) print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 08 2017
Extensions
a(41)-a(70) from Andrew Howroyd, Jul 07 2017