A289482 Number of Dyck paths of semilength n^2 and height n.
1, 1, 7, 1341, 5828185, 517500496981, 877820839402932499, 27202373147496127842409429, 14934414860406931133627906259665137, 142143740345412121643458345045577780672138977, 23087568034858117342849941754170955046637454778184629205
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Crossrefs
Main diagonal of A289481.
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) end: a:= n-> `if`(n=0, 1, b(2*n^2, 0, n)-b(2*n^2, 0, n-1)): seq(a(n), n=0..12);
-
Mathematica
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y
Indranil Ghosh, Jul 08 2017 *)
Formula
a(n) = A289481(n,n).
a(n) ~ c * 2^(2*n^2) / n^4, where c = 0.034180619793706218467525729844898502557235639065782754227258170112282483988... - Vaclav Kotesovec, Jul 14 2017