cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289491 a(n) = denominator of 1/(1 + 1/(1 + 2/(1 + ... (1 + n)))).

Original entry on oeis.org

2, 4, 5, 13, 19, 58, 191, 131, 1187, 2231, 17519, 71063, 29881, 323423, 2887921, 13237457, 2397389, 15030317, 742458253, 3748521653, 9670072483, 25451905333, 10932619111, 78684575461, 4163946939067, 11799518538967, 136025604432743, 159359728522979
Offset: 1

Views

Author

Seiichi Manyama, Sep 02 2017

Keywords

Examples

			1/2, 3/4, 3/5, 9/13, 12/19, 39/58, 123/191, 87/131, 771/1187, 1473/2231, 11427/17519, 46779/71063, 19533/29881, ... = A225436/A289491 -> A108088.
A225436(1)/a(1) = 1/2  = 1/(1 + 1)                         =  1/2,
A225436(2)/a(2) = 3/4  = 1/(1 + 1/(1 + 2))                 =  3/4,
A225436(3)/a(3) = 3/5  = 1/(1 + 1/(1 + 2/(1 + 3)))         =  6/10,
A225436(4)/a(4) = 9/13 = 1/(1 + 1/(1 + 2/(1 + 3/(1 + 4)))) = 18/26.
		

Crossrefs

Cf. A000085, A000932, A108088, A225435, A225436 (numerators).

Programs

  • Maple
    p:= (i, n)-> `if`(i=n, (1+n), 1+i/p(i+1,n)):
    a:= n-> denom(1/p(1,n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 02 2017

Formula

a(n) = A225435(n) + A225436(n).
A225436(n)/a(n) = 1/(1 + 1/(1 + 2/(1 + ... (1 + n)))) = A000932(n)/A000085(n+1).