A289508 a(n) is the GCD of the indices j for which the j-th prime p_j divides n.
0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 1, 1, 7, 1, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 1, 1, 1, 1, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 4, 1, 1, 1, 16, 1, 1, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 1, 1, 20, 1, 21, 1, 1, 1, 1, 1, 22, 1, 2, 1, 23
Offset: 1
Examples
a(n) = 1 for all even n as 2 = p_1. Also a(p_j) = j. Further, a(703) = 4 because 703 = p_8.p_{12} and gcd(8,12) = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
f:= n -> igcd(op(map(numtheory:-pi, numtheory:-factorset(n)))): map(f, [$1..100]); # Robert Israel, Jul 19 2017
-
Mathematica
Table[GCD @@ Map[PrimePi, FactorInteger[n][[All, 1]] ], {n, 2, 83}] (* Michael De Vlieger, Jul 19 2017 *)
-
PARI
a(n) = my(f=factor(n)); gcd(apply(x->primepi(x), f[,1])); \\ Michel Marcus, Jul 19 2017
-
Python
from sympy import primefactors, primepi, gcd def a(n): return gcd([primepi(d) for d in primefactors(n)]) print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jul 20 2017
Comments