A319002 Number of ordered factorizations of n where the sequence of GCDs of prime indices (A289508) of the factors is weakly increasing.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 4, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 6, 1, 16, 2, 2, 2, 11, 1, 2, 2, 12, 1, 5, 1, 5, 4, 2, 1, 28, 2, 4, 2, 5, 1, 8, 2, 12, 2, 2, 1, 18, 1, 2, 5, 32, 2, 6, 1, 5, 2, 6, 1, 29, 1, 2, 4, 5, 2, 5, 1, 28, 8, 2, 1
Offset: 1
Keywords
Examples
The a(36) = 11 ordered factorizations: (2*2*3*3), (2*2*9), (2*6*3), (6*2*3), (4*3*3), (2*18), (18*2), (12*3), (4*9), (6*6), (36). The a(36) = 11 ordered multiset partitions: {{1,1,2,2}} {{1},{1,2,2}} {{1,2,2},{1}} {{1,1,2},{2}} {{1,1},{2,2}} {{1,2},{1,2}} {{1},{1},{2,2}} {{1},{1,2},{2}} {{1,2},{1},{2}} {{1,1},{2},{2}} {{1},{1},{2},{2}}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; gix[n_]:=GCD@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]]; Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[gix/@#]&]],{n,100}]
Comments