A327473
Heinz numbers of integer partitions whose mean A326567/A326568 is a part.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 105, 107, 109, 110, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
37: {12}
The enumeration of these partitions by sum is given by
A237984.
Subsets whose mean is a part are
A065795.
Numbers whose binary indices include their mean are
A327478.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],MemberQ[primeMS[#],Mean[primeMS[#]]]&]
A327476
Heinz numbers of integer partitions whose mean A326567/A326568 is not a part.
Original entry on oeis.org
1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
6: {1,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
40: {1,1,1,3}
The enumeration of these partitions by sum is given by
A327472.
Subsets whose mean is not an element are
A327471.
Cf.
A056239,
A067538,
A112798,
A114639,
A237984,
A240851,
A316413,
A324756,
A324758,
A326567/
A326568,
A327477.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[primeMS[#],Mean[primeMS[#]]]&]
A360008
Positions of first appearances in the sequence giving the mean of prime indices (A326567/A326568).
Original entry on oeis.org
1, 3, 5, 6, 7, 11, 12, 13, 14, 17, 18, 19, 23, 24, 26, 29, 31, 37, 38, 41, 42, 43, 47, 48, 52, 53, 54, 58, 59, 61, 67, 71, 72, 73, 74, 76, 79, 83, 86, 89, 92, 96, 97, 101, 103, 104, 106, 107, 108, 109, 113, 122, 124, 127, 131, 137, 139, 142, 148, 149, 151, 152
Offset: 1
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
6: {1,2}
7: {4}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
17: {7}
18: {1,2,2}
19: {8}
23: {9}
24: {1,1,1,2}
A316413 lists numbers whose prime indices have integer mean.
A359908 = numbers w/ integer median of prime indices, complement
A359912.
-
nn=1000;
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
seq=Table[If[n==1,1,Mean[prix[n]]],{n,nn}];
Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]
A327902
Nonprime squarefree numbers whose prime indices all have the same average of prime indices (A326567/A326568).
Original entry on oeis.org
1, 21, 57, 115, 133, 145, 159, 371, 393, 399, 515, 535, 565, 667, 803, 869, 917, 933, 1007, 1067, 1113, 1963, 2021, 2095, 2157, 2165, 2177, 2249, 2285, 2315, 2363, 2369, 2461, 2489, 2599, 2705, 2751, 2839, 2987, 3021, 3103, 3277, 3335, 3707, 3859, 4331, 4367
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
21: {2,4}
57: {2,8}
115: {3,9}
133: {4,8}
145: {3,10}
159: {2,16}
371: {4,16}
393: {2,32}
399: {2,4,8}
515: {3,27}
535: {3,28}
565: {3,30}
667: {9,10}
803: {5,21}
869: {5,22}
917: {4,32}
933: {2,64}
1007: {8,16}
1067: {5,25}
The version including primes and nonsquarefree numbers is
A326536.
The version for number of prime indices is
A327900.
The version for sum of prime indices is
A327901.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Mean/@primeMS/@primeMS[#]&];
A359893
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 0 1
1 1 0 0 1
2 0 2 0 0 0 1
3 0 1 2 0 0 0 0 1
4 1 2 0 3 0 0 0 0 0 1
6 1 3 0 1 3 0 0 0 0 0 0 1
8 1 6 0 2 0 4 0 0 0 0 0 0 0 1
11 2 7 1 3 0 1 4 0 0 0 0 0 0 0 0 1
15 2 10 3 4 0 2 0 5 0 0 0 0 0 0 0 0 0 1
20 3 13 3 7 0 3 0 1 5 0 0 0 0 0 0 0 0 0 0 1
26 4 19 3 11 1 4 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 1
For example, row n = 8 counts the following partitions:
611 4211 422 . 332 . 44 . . . . . . . 8
5111 521 431 53
32111 2222 62
41111 3221 71
221111 3311
311111 22211
2111111
11111111
Row lengths are 2n-1 =
A005408(n-1).
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]
A326567
Numerator of the average of the multiset of prime indices of n.
Original entry on oeis.org
1, 2, 1, 3, 3, 4, 1, 2, 2, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 3, 3, 9, 5, 3, 7, 2, 2, 10, 2, 11, 1, 7, 4, 7, 3, 12, 9, 4, 3, 13, 7, 14, 7, 7, 5, 15, 6, 4, 7, 9, 8, 16, 7, 4, 7, 5, 11, 17, 7, 18, 6, 8, 1, 9, 8, 19, 3, 11, 8, 20, 7, 21, 13, 8, 10, 9, 3, 22, 7, 2, 7
Offset: 2
The prime indices of 12 are {1,1,2}, with average 4/3, so a(12) = 4.
Cf.
A001222,
A001414,
A056239,
A067629,
A112798,
A123528/
A123529,
A289508,
A289509,
A290103,
A316413,
A326568.
-
Table[Numerator[Sum[q[[2]]*PrimePi[q[[1]]],{q,FactorInteger[n]}]/PrimeOmega[n]],{n,2,100}]
A360005
Two times the median of the multiset of prime indices of n.
Original entry on oeis.org
2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2
The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
A316413 lists numbers whose prime indices have integer mean.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[2*Median[prix[n]],{n,2,100}]
A359901
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
Including half-steps gives
A359893.
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]
A359902
Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
0 1
1 0 1
1 0 0 1
2 1 0 0 1
2 2 0 0 0 1
4 2 1 0 0 0 1
4 3 2 0 0 0 0 1
7 4 3 1 0 0 0 0 1
8 6 3 2 0 0 0 0 0 1
12 8 4 3 1 0 0 0 0 0 1
14 11 5 4 2 0 0 0 0 0 0 1
21 14 8 4 3 1 0 0 0 0 0 0 1
24 20 10 5 4 2 0 0 0 0 0 0 0 1
34 25 15 6 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(3,3,1,1,1) (6,2,1) (4,3,2)
(4,2,1,1,1) (2,2,2,2,1) (5,3,1)
(5,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]
A307683
Number of partitions of n having a non-integer median.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1
a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
Cf.
A000016,
A051293,
A067538,
A082550,
A240219,
A240850,
A316413,
A326567/
A326568,
A327475,
A359897,
A360005.
Showing 1-10 of 120 results.
Comments