cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289546 Triangle read by rows. T(n,k) is the number of flags in an n dimensional vector space over GF(2) that have length exactly k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 14, 21, 0, 1, 65, 315, 315, 0, 1, 372, 4650, 13020, 9765, 0, 1, 2823, 87234, 527310, 1025325, 615195, 0, 1, 29210, 2291715, 27448764, 105413175, 156259530, 78129765, 0, 1, 417197, 88508205, 2043137265, 14019952275, 38897461575, 46487210175, 19923090075
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,    3;
  0, 1,   14,    21;
  0, 1,   65,   315,    315;
  0, 1,  372,  4650,  13020,    9765;
  0, 1, 2823, 87234, 527310, 1025325, 615195;
		

Crossrefs

Cf. A005329 (main diagonal), A289545 (row sums).

Programs

  • Mathematica
    nn = 8; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[Take[(Table[ FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,  nn}] CoefficientList[Series[ 1/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid

Formula

T(n,k)/A005329(n) is the coefficient of y^k*x^n in 1/(1 - y (eq(x) - 1)) where eq(x) is the q-exponential function.