A289559 Number of modulo n residues among sums of two fourth powers.
1, 2, 3, 3, 3, 6, 7, 3, 7, 6, 11, 9, 10, 14, 9, 3, 13, 14, 19, 9, 21, 22, 23, 9, 11, 20, 19, 21, 22, 18, 31, 6, 33, 26, 21, 21, 37, 38, 30, 9, 41, 42, 43, 33, 21, 46, 47, 9, 43, 22, 39, 30, 53, 38, 33, 21, 57, 44, 59, 27, 61, 62, 49, 11, 30, 66, 67
Offset: 1
Examples
a(7) = 7 because (j^4 + k^4) mod 7, where j and k are integers, can take on all 7 values 0..6; e.g.: (0^4 + 0^4) mod 7 = ( 0 + 0) mod 7 = 0 mod 7 = 0; (0^4 + 1^4) mod 7 = ( 0 + 1) mod 7 = 1 mod 7 = 1; (1^4 + 1^4) mod 7 = ( 1 + 1) mod 7 = 2 mod 7 = 2; (1^4 + 2^4) mod 7 = ( 1 + 16) mod 7 = 17 mod 7 = 3; (2^4 + 2^4) mod 7 = (16 + 16) mod 7 = 32 mod 7 = 4; (1^4 + 3^4) mod 7 = ( 1 + 81) mod 7 = 82 mod 7 = 5; (2^4 + 3^4) mod 7 = (16 + 81) mod 7 = 97 mod 7 = 6. a(16) = 3 because (j^4 + k^4) mod 16 can take on only the three values 0, 1, and 2. (This is because j^4 mod 16 = 0 for all even j and 1 for all odd j.)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Mathematics Overflow, Does the expression x^4+y^4 take on all values in Z/pZ (see answer by J. Silverman)
Crossrefs
Cf. A155918 (gives number of modulo n residues among sums of two squares).
Programs
-
Maple
f1:= proc(n) option remember; local S; S:= {seq(x^4 mod n, x=0..n-1)}; nops({seq(seq(S[i]+S[j] mod n,i=1..j),j=1..nops(S))}); end proc: f:= proc(n) local t; mul(f1(t[1]^t[2]), t = ifactors(n)[2]) end proc: map(f, [$1..100]); # Robert Israel, Jul 09 2017
-
Mathematica
f1[n_] := f1[n] = Module[{S = Table[Mod[x^4, n], {x, 0, n-1}] // Union}, Table[Mod[S[[i]] + S[[j]], n], {j, 1, Length[S]}, {i, 1, j}] // Flatten // Union // Length]; f[n_] := Module[{p, e}, Product[{p, e} = pe; f1[p^e], {pe, FactorInteger[n]}]]; Array[f, 100] (* Jean-François Alcover, Jul 30 2020, after Maple *)
-
PARI
a(n) = #Set(vector(n^2, i, ((i%n)^4 + (i\n)^4) % n)); \\ Michel Marcus, Jul 08 2017
Comments