cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289559 Number of modulo n residues among sums of two fourth powers.

Original entry on oeis.org

1, 2, 3, 3, 3, 6, 7, 3, 7, 6, 11, 9, 10, 14, 9, 3, 13, 14, 19, 9, 21, 22, 23, 9, 11, 20, 19, 21, 22, 18, 31, 6, 33, 26, 21, 21, 37, 38, 30, 9, 41, 42, 43, 33, 21, 46, 47, 9, 43, 22, 39, 30, 53, 38, 33, 21, 57, 44, 59, 27, 61, 62, 49, 11, 30, 66, 67
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 08 2017

Keywords

Comments

Conjecture: the only primes p for which a(p) < p are 5, 13, 17, 29. - Robert Israel, Jul 09 2017
Conjecture is true: see Math Overflow link. - Robert Israel, Apr 01 2020

Examples

			a(7) = 7 because (j^4 + k^4) mod 7, where j and k are integers, can take on all 7 values 0..6; e.g.:
   (0^4 + 0^4) mod 7 = ( 0 +  0) mod 7 =  0 mod 7 = 0;
   (0^4 + 1^4) mod 7 = ( 0 +  1) mod 7 =  1 mod 7 = 1;
   (1^4 + 1^4) mod 7 = ( 1 +  1) mod 7 =  2 mod 7 = 2;
   (1^4 + 2^4) mod 7 = ( 1 + 16) mod 7 = 17 mod 7 = 3;
   (2^4 + 2^4) mod 7 = (16 + 16) mod 7 = 32 mod 7 = 4;
   (1^4 + 3^4) mod 7 = ( 1 + 81) mod 7 = 82 mod 7 = 5;
   (2^4 + 3^4) mod 7 = (16 + 81) mod 7 = 97 mod 7 = 6.
a(16) = 3 because (j^4 + k^4) mod 16 can take on only the three values 0, 1, and 2. (This is because j^4 mod 16 = 0 for all even j and 1 for all odd j.)
		

Crossrefs

Cf. A155918 (gives number of modulo n residues among sums of two squares).

Programs

  • Maple
    f1:= proc(n) option remember; local S;
        S:= {seq(x^4 mod n, x=0..n-1)};
      nops({seq(seq(S[i]+S[j] mod n,i=1..j),j=1..nops(S))});
    end proc:
    f:= proc(n) local t;
    mul(f1(t[1]^t[2]), t = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 09 2017
  • Mathematica
    f1[n_] := f1[n] = Module[{S = Table[Mod[x^4, n], {x, 0, n-1}] // Union}, Table[Mod[S[[i]] + S[[j]], n], {j, 1, Length[S]}, {i, 1, j}] // Flatten // Union // Length];
    f[n_] := Module[{p, e}, Product[{p, e} = pe; f1[p^e], {pe, FactorInteger[n]}]];
    Array[f, 100] (* Jean-François Alcover, Jul 30 2020, after Maple *)
  • PARI
    a(n) = #Set(vector(n^2, i, ((i%n)^4 + (i\n)^4) % n)); \\ Michel Marcus, Jul 08 2017