A289585 Quotients as they appear as k increases when tau(k) divides phi(k).
1, 1, 2, 3, 1, 2, 1, 5, 6, 2, 8, 1, 9, 3, 11, 1, 3, 2, 14, 1, 15, 5, 4, 6, 18, 6, 2, 20, 21, 4, 23, 14, 8, 4, 26, 10, 3, 9, 7, 29, 30, 6, 12, 33, 11, 3, 35, 2, 36, 9, 6, 15, 3, 39, 10, 41, 2, 16, 14, 5, 44, 2, 18, 15, 18, 48, 7, 10, 50, 4, 51, 6, 6, 13, 53, 3, 54, 5, 18, 56, 22, 12, 24, 2
Offset: 1
Keywords
Examples
a(10) = 2 because A020491(10) = 15 and phi(15)/tau(15) = 8/4 = 2.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
for n from 1 to 50 do q:=phi(n)/tau(n); if q=floor(q) then print(n,q,phi(n),tau(n)) else fi; od:
-
Mathematica
f[n_] := Block[{d = EulerPhi[n]/DivisorSigma[0, n]}, If[ IntegerQ@d, d, Nothing]]; Array[f, 120] (* Robert G. Wilson v, Jul 09 2017 *)
-
PARI
lista(nn) = {for (n=1, nn, q = eulerphi(n)/numdiv(n); if (denominator(q)==1, print1(q, ", ")););} \\ Michel Marcus, Jul 10 2017
Comments