cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289761 Maximum length of a perfect Wichmann ruler with n segments.

Original entry on oeis.org

3, 6, 9, 12, 15, 22, 29, 36, 43, 50, 57, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232, 251, 270, 289, 308, 327, 350, 373, 396, 419, 442, 465, 492, 519, 546, 573, 600, 627, 658, 689, 720, 751, 782, 813, 848, 883, 918, 953, 988, 1023, 1062, 1101, 1140, 1179, 1218, 1257, 1300, 1343, 1386, 1429
Offset: 2

Views

Author

Hugo Pfoertner, Jul 12 2017

Keywords

Comments

For definitions see A103294.

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3 + n, {n, 2, 66}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    a(n) = n + (n^2 - (n%6 - 3)^2)/3; \\ Michel Marcus, Jul 14 2017
    
  • Python
    def A289761(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k # Chai Wah Wu, Jun 20 2024

Formula

a(n) = ( n^2 - (mod(n,6)-3)^2 ) / 3 + n.
Conjectures from Colin Barker, Jul 14 2017: (Start)
G.f.: x^2*(3 + 4*x^5 - 3*x^6) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)