A292480 p-INVERT of the odd positive integers, where p(S) = 1 - S^2.
0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560
Offset: 0
Examples
s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ..., p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2, 1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ... T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ... t(s) = (0,1,2,20,56,...).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,6)
Programs
-
Magma
I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292480 *) Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)
Formula
G.f.: x*(1 + x)^2/((1 - 3*x)*(1 - x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) for n >= 5.
Comments