cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292480 p-INVERT of the odd positive integers, where p(S) = 1 - S^2.

Original entry on oeis.org

0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560
Offset: 0

Views

Author

Clark Kimberling, Oct 02 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,3,5,7,9,...) = A005408, in some cases t(1,3,5,7,9,...) is a shifted (or differently indexed) version of the cited sequence:
p(S) *********** t(1,3,5,7,9,...)
1 - S A003946
1 - S^2 A292480
1 - S^3 (not yet in OEIS)
(1 - S)^2 (not yet in OEIS)
(1 - S)^3 (not yet in OEIS)
1 - S - S^2 A289786
1 + S - S^2 A289484
1 - S - 2 S^2 A289785
1 - S - 3 S^2 A289786
1 - S - 4 S^2 A289787
1 - S - 5 S^2 A289788
1 - S - 6 S^2 A289789
1 - S - 7 S^2 A289790
1 + S - 2 S^2 A289791
1 - S + S^2 - S^3 A289792
1 + S - 3 S^2 A289793
1 - S - S^2 - S^3 A289794

Examples

			s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,
p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...
t(s) = (0,1,2,20,56,...).
		

Crossrefs

Programs

  • Magma
    I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292480 *)
    Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)

Formula

G.f.: x*(1 + x)^2/((1 - 3*x)*(1 - x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) for n >= 5.

A289787 p-INVERT of the even positive integers (A005843), where p(S) = 1 - S - S^2.

Original entry on oeis.org

2, 12, 62, 312, 1570, 7908, 39838, 200688, 1010978, 5092860, 25655582, 129241512, 651061762, 3279762132, 16521995710, 83230530528, 419278719938, 2112141348588, 10640036959358, 53599815453720, 270012240337762, 1360202629711812, 6852101192007262
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = 2*x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005843 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289787 *)
    u/2 (* A289788 *)

Formula

G.f.: (2 (1 + x^2))/(1 - 6 x + 6 x^2 - 6 x^3 + x^4).
a(n) = 6*a(n-1) - 6*a(n-2) + 6*a(n-3) - a(n-4).
Showing 1-2 of 2 results.