cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289793 Number of 5-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 312, 3024, 14868, 51744, 145152, 350784, 759528, 1511136, 2810808, 4948944, 8324316, 13470912, 21088704, 32078592, 47581776, 69023808, 98163576, 137147472, 188568996, 255534048, 341732160, 451513920, 589974840, 763045920, 977591160, 1241512272
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289792 (4-cycles), A289794 (6-cycles).

Programs

  • Mathematica
    Table[6 Binomial[n, 5] (-78 + 21 n + n^2), {n, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 0, 312, 3024, 14868, 51744}, 20]
    CoefficientList[Series[-((12 x^4 (-26 - 44 x + 49 x^2))/(-1 + x)^8), {x, 0, 20}], x]

Formula

a(n) = 6*binomial(n, 5)*(-78 + 21*n + n^2).
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8).
G.f.: (-12*x^5*(-26 - 44*x + 49*x^2))/(-1 + x)^8.