A289793 Number of 5-cycles in the n-tetrahedral graph.
0, 0, 0, 0, 312, 3024, 14868, 51744, 145152, 350784, 759528, 1511136, 2810808, 4948944, 8324316, 13470912, 21088704, 32078592, 47581776, 69023808, 98163576, 137147472, 188568996, 255534048, 341732160, 451513920, 589974840, 763045920, 977591160, 1241512272
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Programs
-
Mathematica
Table[6 Binomial[n, 5] (-78 + 21 n + n^2), {n, 20}] LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 0, 312, 3024, 14868, 51744}, 20] CoefficientList[Series[-((12 x^4 (-26 - 44 x + 49 x^2))/(-1 + x)^8), {x, 0, 20}], x]
Formula
a(n) = 6*binomial(n, 5)*(-78 + 21*n + n^2).
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8).
G.f.: (-12*x^5*(-26 - 44*x + 49*x^2))/(-1 + x)^8.
Comments