A292480
p-INVERT of the odd positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560, 15251194970336
Offset: 0
s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,
p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...
t(s) = (0,1,2,20,56,...).
-
I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292480 *)
Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)
A027789
a(n) = 2*(n+1)*binomial(n+3,4).
Original entry on oeis.org
4, 30, 120, 350, 840, 1764, 3360, 5940, 9900, 15730, 24024, 35490, 50960, 71400, 97920, 131784, 174420, 227430, 292600, 371910, 467544, 581900, 717600, 877500, 1064700, 1282554, 1534680, 1824970, 2157600, 2537040, 2968064, 3455760, 4005540, 4623150, 5314680
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Tetrahedral Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[2*(n+1)*Binomial(n+3,4): n in [1..40]]; // Vincenzo Librandi, Jul 13 2017
-
A027789:=n->2*(n+1)*binomial(n+3,4): seq(A027789(n), n=1..60); # Wesley Ivan Hurt, Oct 23 2017
-
Table[2 (n + 1) Binomial[n + 3, 4], {n, 40}] (* Harvey P. Dale, Jan 20 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {4, 30, 120, 350, 840, 1764},40] (* Harvey P. Dale, Jan 20 2015 *)
Table[n (1 + n)^2 (2 + n) (3 + n)/12, {n, 20}] (* Eric W. Weisstein, Jul 12 2017 *)
CoefficientList[Series[(2 (2 + 3 x))/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 12 2017 *)
-
for(n=1,50, print1(2*(n+1)*binomial(n+3,4), ", ")) \\ G. C. Greubel, Oct 22 2017
A289792
Number of 4-cycles in the n-tetrahedral graph.
Original entry on oeis.org
0, 0, 0, 0, 90, 540, 1995, 5775, 14280, 31500, 63630, 119790, 212850, 360360, 585585, 918645, 1397760, 2070600, 2995740, 4244220, 5901210, 8067780, 10862775, 14424795, 18914280, 24515700, 31439850, 39926250, 50245650, 62702640, 77638365, 95433345, 116510400
Offset: 1
-
Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]
CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]
A289794
Number of 6-cycles in the n-tetrahedral graph.
Original entry on oeis.org
0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240, 4994640, 12178320, 26840880, 54620280, 104184080, 188348160, 325459680, 541078720, 869994720, 1358615520, 2067768480, 3075954840, 4483100160, 6414845360, 9027424560, 12513177600, 17106746800, 23092009200
Offset: 1
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
-
Table[5 Binomial[n, 5] (454 - 409 n + 66 n^2 + n^3), {n, 20}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240}, 20]
CoefficientList[Series[(40 x^4 (-23 - 237 x + 102 x^2 + 116 x^3))/(-1 + x)^9, {x, 0, 20}], x]
Showing 1-4 of 4 results.
Comments