cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292480 p-INVERT of the odd positive integers, where p(S) = 1 - S^2.

Original entry on oeis.org

0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560
Offset: 0

Views

Author

Clark Kimberling, Oct 02 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,3,5,7,9,...) = A005408, in some cases t(1,3,5,7,9,...) is a shifted (or differently indexed) version of the cited sequence:
p(S) *********** t(1,3,5,7,9,...)
1 - S A003946
1 - S^2 A292480
1 - S^3 (not yet in OEIS)
(1 - S)^2 (not yet in OEIS)
(1 - S)^3 (not yet in OEIS)
1 - S - S^2 A289786
1 + S - S^2 A289484
1 - S - 2 S^2 A289785
1 - S - 3 S^2 A289786
1 - S - 4 S^2 A289787
1 - S - 5 S^2 A289788
1 - S - 6 S^2 A289789
1 - S - 7 S^2 A289790
1 + S - 2 S^2 A289791
1 - S + S^2 - S^3 A289792
1 + S - 3 S^2 A289793
1 - S - S^2 - S^3 A289794

Examples

			s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,
p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...
t(s) = (0,1,2,20,56,...).
		

Crossrefs

Programs

  • Magma
    I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292480 *)
    Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)

Formula

G.f.: x*(1 + x)^2/((1 - 3*x)*(1 - x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) for n >= 5.

A027789 a(n) = 2*(n+1)*binomial(n+3,4).

Original entry on oeis.org

4, 30, 120, 350, 840, 1764, 3360, 5940, 9900, 15730, 24024, 35490, 50960, 71400, 97920, 131784, 174420, 227430, 292600, 371910, 467544, 581900, 717600, 877500, 1064700, 1282554, 1534680, 1824970, 2157600, 2537040, 2968064, 3455760, 4005540, 4623150, 5314680
Offset: 1

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 8-subsequences of [ 1, n ] with just 3 contiguous pairs.
Also the number of 3-cycles in the n+3 tetrahedral graph. - Eric W. Weisstein, Jul 12 2017

Crossrefs

Cf. A006470, A289792 (4-cycles), A289793 (5-cycles), A289794 (6-cycles).

Programs

  • Magma
    [2*(n+1)*Binomial(n+3,4): n in [1..40]]; // Vincenzo Librandi, Jul 13 2017
    
  • Maple
    A027789:=n->2*(n+1)*binomial(n+3,4): seq(A027789(n), n=1..60); # Wesley Ivan Hurt, Oct 23 2017
  • Mathematica
    Table[2 (n + 1) Binomial[n + 3, 4], {n, 40}] (* Harvey P. Dale, Jan 20 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {4, 30, 120, 350, 840, 1764},40] (* Harvey P. Dale, Jan 20 2015 *)
    Table[n (1 + n)^2 (2 + n) (3 + n)/12, {n, 20}] (* Eric W. Weisstein, Jul 12 2017 *)
    CoefficientList[Series[(2 (2 + 3 x))/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 12 2017 *)
  • PARI
    for(n=1,50, print1(2*(n+1)*binomial(n+3,4), ", ")) \\ G. C. Greubel, Oct 22 2017

Formula

G.f.: 2*(2+3x)*x/(1-x)^6.
a(n) = 2*A006470(n).
a(n) = C(n+1, 2)*C(n+3, 3). - Zerinvary Lajos, May 10 2005, corrected by R. J. Mathar, Feb 13 2016
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jan 20 2015
a(n) = Sum_{k=1..n+1} Sum_{i=1..n+1} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 61/6 - Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 8*log(2) + 5/6. (End)

A289792 Number of 4-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 90, 540, 1995, 5775, 14280, 31500, 63630, 119790, 212850, 360360, 585585, 918645, 1397760, 2070600, 2995740, 4244220, 5901210, 8067780, 10862775, 14424795, 18914280, 24515700, 31439850, 39926250, 50245650, 62702640, 77638365, 95433345, 116510400
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289793 (5-cycles), A289794 (6-cycles).

Programs

  • Mathematica
    Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]
    CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]

Formula

a(n) = binomial(n - 1, 4) * (210 - 41*n + 7*n^2)/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-15*x^5*(6 - 6*x + 7*x^2))/(-1 + x)^7.

A289793 Number of 5-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 312, 3024, 14868, 51744, 145152, 350784, 759528, 1511136, 2810808, 4948944, 8324316, 13470912, 21088704, 32078592, 47581776, 69023808, 98163576, 137147472, 188568996, 255534048, 341732160, 451513920, 589974840, 763045920, 977591160, 1241512272
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289792 (4-cycles), A289794 (6-cycles).

Programs

  • Mathematica
    Table[6 Binomial[n, 5] (-78 + 21 n + n^2), {n, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 0, 312, 3024, 14868, 51744}, 20]
    CoefficientList[Series[-((12 x^4 (-26 - 44 x + 49 x^2))/(-1 + x)^8), {x, 0, 20}], x]

Formula

a(n) = 6*binomial(n, 5)*(-78 + 21*n + n^2).
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8).
G.f.: (-12*x^5*(-26 - 44*x + 49*x^2))/(-1 + x)^8.
Showing 1-4 of 4 results.