cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006470 Number of tree-rooted planar maps with 3 faces and n vertices and no isthmuses.

Original entry on oeis.org

2, 15, 60, 175, 420, 882, 1680, 2970, 4950, 7865, 12012, 17745, 25480, 35700, 48960, 65892, 87210, 113715, 146300, 185955, 233772, 290950, 358800, 438750, 532350, 641277, 767340, 912485, 1078800, 1268520, 1484032, 1727880, 2002770, 2311575, 2657340, 3043287, 3472820, 3949530, 4477200, 5059810, 5701542, 6406785, 7180140
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ordered rooted trees with n+3 non-root nodes that have 3 leaves; see A108838. - Joerg Arndt, Aug 18 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A342987.

Programs

Formula

a(n) = (n+1)*binomial(n+3, 4).
a(n) = A027789(n)/2.
From Zerinvary Lajos, Dec 14 2005: (Start)
a(n) = binomial(n+2, 2)*binomial(n+4, 3)/2;
G.f.: x*(2+3*x)/(1-x)^6. (End)
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = n*(n+1)^2*(n+2)*(n+3)/24. (End)
Sum_{n>=1} 1/a(n) = 61/3 - 2*Pi^2. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2 - 16*log(2) + 5/3. - Amiram Eldar, Jan 28 2022

Extensions

Name clarified by Andrew Howroyd, Apr 03 2021

A289792 Number of 4-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 90, 540, 1995, 5775, 14280, 31500, 63630, 119790, 212850, 360360, 585585, 918645, 1397760, 2070600, 2995740, 4244220, 5901210, 8067780, 10862775, 14424795, 18914280, 24515700, 31439850, 39926250, 50245650, 62702640, 77638365, 95433345, 116510400
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289793 (5-cycles), A289794 (6-cycles).

Programs

  • Mathematica
    Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]
    CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]

Formula

a(n) = binomial(n - 1, 4) * (210 - 41*n + 7*n^2)/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-15*x^5*(6 - 6*x + 7*x^2))/(-1 + x)^7.

A289793 Number of 5-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 312, 3024, 14868, 51744, 145152, 350784, 759528, 1511136, 2810808, 4948944, 8324316, 13470912, 21088704, 32078592, 47581776, 69023808, 98163576, 137147472, 188568996, 255534048, 341732160, 451513920, 589974840, 763045920, 977591160, 1241512272
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289792 (4-cycles), A289794 (6-cycles).

Programs

  • Mathematica
    Table[6 Binomial[n, 5] (-78 + 21 n + n^2), {n, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 0, 312, 3024, 14868, 51744}, 20]
    CoefficientList[Series[-((12 x^4 (-26 - 44 x + 49 x^2))/(-1 + x)^8), {x, 0, 20}], x]

Formula

a(n) = 6*binomial(n, 5)*(-78 + 21*n + n^2).
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8).
G.f.: (-12*x^5*(-26 - 44*x + 49*x^2))/(-1 + x)^8.

A289794 Number of 6-cycles in the n-tetrahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240, 4994640, 12178320, 26840880, 54620280, 104184080, 188348160, 325459680, 541078720, 869994720, 1358615520, 2067768480, 3075954840, 4483100160, 6414845360, 9027424560, 12513177600, 17106746800, 23092009200
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2017

Keywords

Comments

Extended to a(1)-a(5) using the formula.

Crossrefs

Cf. A027789 (3-cycles), A289792 (4-cycles), A289793 (5-cycles).

Programs

  • Mathematica
    Table[5 Binomial[n, 5] (454 - 409 n + 66 n^2 + n^3), {n, 20}]
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240}, 20]
    CoefficientList[Series[(40 x^4 (-23 - 237 x + 102 x^2 + 116 x^3))/(-1 + x)^9, {x, 0, 20}], x]

Formula

a(n) = 5*binomial(n, 5)*(454 - 409*n + 66*n^2 + n^3).
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9).
G.f.: (40*x^5*(-23 - 237*x + 102*x^2 + 116*x^3))/(-1 + x)^9.

A293616 Array of generalized Eulerian number triangles read by ascending antidiagonals, with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 0, 1, 0, 1, 10, 0, 7, 1, 0, 1, 15, 0, 25, 4, 0, 0, 1, 21, 0, 65, 10, 0, 1, 0, 1, 28, 0, 140, 20, 0, 15, 4, 0, 1, 36, 0, 266, 35, 0, 90, 30, 1, 0, 1, 45, 0, 462, 56, 0, 350, 120, 5, 0, 0, 1, 55, 0, 750, 84, 0, 1050, 350, 15, 0, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 14 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3    4  5       6       7    8  9      10      11      12
---|----------------------------------------------------------------------------
m=0| 1,  0, 0,    0,   0, 0,      0,      0,   0, 0,      0,      0,      0, ...
m=1| 1,  1, 0,    1,   1, 0,      1,      4,   1, 0,      1,     11,     11, ...
m=2| 1,  3, 0,    7,   4, 0,     15,     30,   5, 0,     31,    146,     91, ...
m=3| 1,  6, 0,   25,  10, 0,     90,    120,  15, 0,    301,    896,    406, ...
m=4| 1, 10, 0,   65,  20, 0,    350,    350,  35, 0,   1701,   3696,   1316, ...
m=5| 1, 15, 0,  140,  35, 0,   1050,    840,  70, 0,   6951,  11886,   3486, ...
m=6| 1, 21, 0,  266,  56, 0,   2646,   1764, 126, 0,  22827,  32172,   8022, ...
m=7| 1, 28, 0,  462,  84, 0,   5880,   3360, 210, 0,  63987,  76692,  16632, ...
m=8| 1, 36, 0,  750, 120, 0,  11880,   5940, 330, 0, 159027, 165792,  31812, ...
m=9| 1, 45, 0, 1155, 165, 0,  22275,   9900, 495, 0, 359502, 331617,  57057, ...
   A000217, A001296,A000292,A001297,A027789,A000332,A001298,A293610,A293611, ...
.
m\j| ...    13  14      15       16       17      18      19 20
---|----------------------------------------------------------------
m=0| ...,    0, 0,       0,       0,       0,      0,      0, 0, ...  [A000007]
m=1| ...,    1, 0,       1,      26,      66,     26,      1, 0, ...  [A173018]
m=2| ...,    6, 0,      63,     588,     868,    238,      7, 0, ...  [A062253]
m=3| ...,   21, 0,     966,    5376,    5586,   1176,     28, 0, ...  [A062254]
m=4| ...,   56, 0,    7770,   30660,   24570,   4200,     84, 0, ...  [A062255]
m=5| ...,  126, 0,   42525,  129780,   84630,  12180,    210, 0, ...
m=6| ...,  252, 0,  179487,  446292,  245322,  30492,    462, 0, ...
m=7| ...,  462, 0,  627396, 1315776,  625086,  68376,    924, 0, ...
m=8| ...,  792, 0, 1899612, 3444012, 1440582, 140712,   1716, 0, ...
m=9| ..., 1287, 0, 5135130, 8198190, 3063060, 270270,   3003, 0, ...
          A000389, A112494, A293612, A293613,A293614,A000579.
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A062253, T(4, 2) is row 2 of A062255 (which is [65, 20, 0]) and T(4, 2, 1) = 20.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A000292(n) = T(n, 2, 1),
A001297(n) = T(n, 3, 0), A027789(n) = T(n, 3, 1), A000332(n) = T(n, 3, 2),
A001298(n) = T(n, 4, 0), A293610(n) = T(n, 4, 1), A293611(n) = T(n, 4, 2),
A000389(n) = T(n, 4, 3), A112494(n) = T(n, 5, 0), A293612(n) = T(n, 5, 1),
A293613(n) = T(n, 5, 2), A293614(n) = T(n, 5, 3), A000579(n) = T(n, 5, 4),
A144969(n) = T(n, 6, 0), A000580(n) = T(n, 6, 5), A000295(n) = T(1, n, 1),
A000460(n) = T(1, n, 2), A000498(n) = T(1, n, 3), A000505(n) = T(1, n, 4),
A000514(n) = T(1, n, 5), A001243(n) = T(1, n, 6), A001244(n) = T(1, n, 7),
A126646(n) = T(2, n, 0), A007820(n) = T(n, n, 0).

Programs

  • Maple
    A293616 := proc(m, n, k) option remember:
    if m = 0 then m^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293616(m,n-1,k) + (n-k)*A293616(m,n-1,k-1) + A293616(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293616(m, n, k), k=0..n)) od od;
    # Sample uses:
    A001298 := n -> A293616(n, 4, 0): A293614 := n -> A293616(n, 5, 3):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293616(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    GenEulerianRow[0, n_] := Table[If[n==0 && j==0,1,0], {j,0,n}];
    GenEulerianRow[m_, n_] := If[n==0,{1},Join[CoefficientList[x^(-m) (1 - x)^(n+m)
        PolyLog[-n-m, m, x] /. Log[1-x] -> 0, x], {0}]];
    (* Sample use: *)
    A173018Row[n_] := GenEulerianRow[1, n]; Table[A173018Row[n], {n, 0, 6}]

Formula

T(m, n, k) = (k + m)*T(m, n-1, k) + (n - k)*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k < 0 or k > n; and T(m, 0, k) = 0^k.
Let h(m, n) = x^(-m)*(1 - x)^(n + m)*PolyLog(-n - m, m, x) and p(m, n) the polynomial given by the expansion of h(m, n) after replacing log(1 - x) by 0. Then T(m, n, k) is the k-th coefficient of p(m, n) for 0 <= k < n.

A118963 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that have k double rises (n >= 1, k >= 0).

Original entry on oeis.org

2, 3, 3, 4, 12, 4, 5, 30, 30, 5, 6, 60, 120, 60, 6, 7, 105, 350, 350, 105, 7, 8, 168, 840, 1400, 840, 168, 8, 9, 252, 1764, 4410, 4410, 1764, 252, 9, 10, 360, 3360, 11760, 17640, 11760, 3360, 360, 10, 11, 495, 5940, 27720, 58212, 58212, 27720, 5940, 495, 11, 12
Offset: 1

Views

Author

Emeric Deutsch, May 07 2006

Keywords

Comments

A Grand Dyck path of semilength n is a path in the half-plane x >= 0, starting at (0,0), ending at (2n,0) and consisting of steps u = (1,1) and d = (1,-1); a double rise in a Grand Dyck path is an occurrence of uu in the path.
For double rises only above the x-axis see A118964.
This is the triangle of Narayana with row n multiplied by n + 1. - Peter Luschny, May 02 2022

Examples

			T(3,2)=4 because we have uuuddd, duuudd, dduuud and ddduuu.
Triangle begins:
  2;
  3,    3;
  4,   12,    4;
  5,   30,   30,    5;
  6,   60,  120,   60,    6;
  7,  105,  350,  350,  105,    7;
  8,  168,  840, 1400,  840,  168,    8;
  9,  252, 1764, 4410, 4410, 1764,  252,    9;
		

Crossrefs

Programs

  • Maple
    r:=(1-z-t*z-sqrt(z^2*t^2-2*z^2*t-2*z*t+z^2-2*z+1))/2/t/z: G:=(1+r)^2/(1-t*r^2)-1: Gser:=simplify(series(G,z=0,15)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
    for n from 0 to 10 do seq(binomial(n,i)*binomial(n+2,n+1-i), i=0..n ); od; # Zerinvary Lajos, Nov 03 2006

Formula

T(n,1) = n(n^2 - 1)/2 (A027480).
T(n,2) = (n+1)n(n-1)^2*(n-2)/12 (A027789).
T(n,k) = ((n+1)/n)*binomial(n,k)*binomial(n,k+1).
Sum_{k>=0} k*T(n,k) = (2n-1)!/(n!(n-2)!) (A000917).
G.f.: G(t,z) = (1+r)^2/(1 - tr^2) - 1, where r = r(t,z) is the Narayana function, defined by (1+r)(1+tr)z = r, r(t,0) = 0. More generally, the g.f. H = H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H = (1 + r(s,z))/(1 - z(1 + tr(t,z))(1 + ur(s,z))).
Row n is given by seq(binomial(n, k)*binomial(n+2, n+1-k), k=0..n). - Zerinvary Lajos, Nov 03 2006
T(n,k)/(n+1) = A001263(n,k). - Peter Luschny, May 02 2022
Showing 1-6 of 6 results.