A342987
Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 15, 5, 0, 4, 60, 84, 14, 0, 5, 175, 650, 420, 42, 0, 6, 420, 3324, 5352, 1980, 132, 0, 7, 882, 13020, 42469, 37681, 9009, 429, 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430, 0, 9, 2970, 118998, 1142622, 3462354, 3711027, 1421226, 175032, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 15, 5;
0, 4, 60, 84, 14;
0, 5, 175, 650, 420, 42;
0, 6, 420, 3324, 5352, 1980, 132;
0, 7, 882, 13020, 42469, 37681, 9009, 429;
0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
...
-
\\ here G(n,y) is A342984 as g.f.
F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A027789
a(n) = 2*(n+1)*binomial(n+3,4).
Original entry on oeis.org
4, 30, 120, 350, 840, 1764, 3360, 5940, 9900, 15730, 24024, 35490, 50960, 71400, 97920, 131784, 174420, 227430, 292600, 371910, 467544, 581900, 717600, 877500, 1064700, 1282554, 1534680, 1824970, 2157600, 2537040, 2968064, 3455760, 4005540, 4623150, 5314680
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Tetrahedral Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[2*(n+1)*Binomial(n+3,4): n in [1..40]]; // Vincenzo Librandi, Jul 13 2017
-
A027789:=n->2*(n+1)*binomial(n+3,4): seq(A027789(n), n=1..60); # Wesley Ivan Hurt, Oct 23 2017
-
Table[2 (n + 1) Binomial[n + 3, 4], {n, 40}] (* Harvey P. Dale, Jan 20 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {4, 30, 120, 350, 840, 1764},40] (* Harvey P. Dale, Jan 20 2015 *)
Table[n (1 + n)^2 (2 + n) (3 + n)/12, {n, 20}] (* Eric W. Weisstein, Jul 12 2017 *)
CoefficientList[Series[(2 (2 + 3 x))/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 12 2017 *)
-
for(n=1,50, print1(2*(n+1)*binomial(n+3,4), ", ")) \\ G. C. Greubel, Oct 22 2017
A108838
Triangle of Dyck paths counted by number of long interior inclines.
Original entry on oeis.org
2, 3, 2, 4, 8, 2, 5, 20, 15, 2, 6, 40, 60, 24, 2, 7, 70, 175, 140, 35, 2, 8, 112, 420, 560, 280, 48, 2, 9, 168, 882, 1764, 1470, 504, 63, 2, 10, 240, 1680, 4704, 5880, 3360, 840, 80, 2, 11, 330, 2970, 11088, 19404, 16632, 6930, 1320, 99, 2
Offset: 2
Table begins
\ k..0....1....2....3....4....5
n\
2 |..2
3 |..3....2
4 |..4....8....2
5 |..5...20...15....2
6 |..6...40...60...24....2
7 |..7...70..175..140...35....2
The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3.
From _Joerg Arndt_, Aug 18 2014: (Start)
The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
: 1: [ 0 1 1 1 ] 2
: O--o
: .--o
: .--o
:
: 2: [ 0 1 1 2 ] 2
: O--o
: .--o--o
:
: 3: [ 0 1 2 1 ] 1
: O--o--o
: .--o
:
: 4: [ 0 1 2 2 ] 1
: O--o--o
: .--o
:
: 5: [ 0 1 2 3 ] 1
: O--o--o--o
:
This gives [3, 2], row n=3 of the triangle.
(End)
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150, flattened)
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, arXiv:1202.1203 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 19 2012
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, Online Journal of Analytic Combinatorics, Issue 8, 2013.
- David Callan, Some Identities for the Catalan and Fine Numbers, arXiv:math/0502532 [math.CO], 2005.
- M. Delest, J. P. Dubernard, and I. Dutour, Parallelogram polyominoes and corners, J. Symbolic Computation, 20(1995),503-515. [From _Emeric Deutsch_, Oct 09 2008]
- M. P. Delest, D. Gouyou-Beauchamps, and B. Vauquelin, Enumeration of parallelogram polyominoes with given bond and site parameter, Graphs and Combinatorics, 3 (1987), 325-339.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See pp. 6, 18, 27.
Row sums are the Catalan numbers
A000108. Column k=1 is
A007290, k=2 is
A006470. The Narayana numbers
A001263 count Dyck paths by number of long nonterminal inclines.
A091894 (Touchard distribution) counts Dyck paths by number of long nonterminal descents.
-
T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; Emeric Deutsch, Jul 23 2006
-
T[n_, 0] = n;
T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))];
Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Werner Schulte *)
Showing 1-3 of 3 results.
Comments