cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342987 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 15, 5, 0, 4, 60, 84, 14, 0, 5, 175, 650, 420, 42, 0, 6, 420, 3324, 5352, 1980, 132, 0, 7, 882, 13020, 42469, 37681, 9009, 429, 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430, 0, 9, 2970, 118998, 1142622, 3462354, 3711027, 1421226, 175032, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,    2;
  0, 3,   15,     5;
  0, 4,   60,    84,     14;
  0, 5,  175,   650,    420,     42;
  0, 6,  420,  3324,   5352,   1980,    132;
  0, 7,  882, 13020,  42469,  37681,   9009,   429;
  0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
  ...
		

Crossrefs

Columns k=1..4 are A000007, A000027, A006470, A006471.
Diagonals are A000108, A002740, A006432, A006433.
Row sums are A342988.

Programs

  • PARI
    \\ here G(n,y) is A342984 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
    H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x is the g.f. of A342984.

A027789 a(n) = 2*(n+1)*binomial(n+3,4).

Original entry on oeis.org

4, 30, 120, 350, 840, 1764, 3360, 5940, 9900, 15730, 24024, 35490, 50960, 71400, 97920, 131784, 174420, 227430, 292600, 371910, 467544, 581900, 717600, 877500, 1064700, 1282554, 1534680, 1824970, 2157600, 2537040, 2968064, 3455760, 4005540, 4623150, 5314680
Offset: 1

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 8-subsequences of [ 1, n ] with just 3 contiguous pairs.
Also the number of 3-cycles in the n+3 tetrahedral graph. - Eric W. Weisstein, Jul 12 2017

Crossrefs

Cf. A006470, A289792 (4-cycles), A289793 (5-cycles), A289794 (6-cycles).

Programs

  • Magma
    [2*(n+1)*Binomial(n+3,4): n in [1..40]]; // Vincenzo Librandi, Jul 13 2017
    
  • Maple
    A027789:=n->2*(n+1)*binomial(n+3,4): seq(A027789(n), n=1..60); # Wesley Ivan Hurt, Oct 23 2017
  • Mathematica
    Table[2 (n + 1) Binomial[n + 3, 4], {n, 40}] (* Harvey P. Dale, Jan 20 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {4, 30, 120, 350, 840, 1764},40] (* Harvey P. Dale, Jan 20 2015 *)
    Table[n (1 + n)^2 (2 + n) (3 + n)/12, {n, 20}] (* Eric W. Weisstein, Jul 12 2017 *)
    CoefficientList[Series[(2 (2 + 3 x))/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 12 2017 *)
  • PARI
    for(n=1,50, print1(2*(n+1)*binomial(n+3,4), ", ")) \\ G. C. Greubel, Oct 22 2017

Formula

G.f.: 2*(2+3x)*x/(1-x)^6.
a(n) = 2*A006470(n).
a(n) = C(n+1, 2)*C(n+3, 3). - Zerinvary Lajos, May 10 2005, corrected by R. J. Mathar, Feb 13 2016
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jan 20 2015
a(n) = Sum_{k=1..n+1} Sum_{i=1..n+1} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 61/6 - Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 8*log(2) + 5/6. (End)

A108838 Triangle of Dyck paths counted by number of long interior inclines.

Original entry on oeis.org

2, 3, 2, 4, 8, 2, 5, 20, 15, 2, 6, 40, 60, 24, 2, 7, 70, 175, 140, 35, 2, 8, 112, 420, 560, 280, 48, 2, 9, 168, 882, 1764, 1470, 504, 63, 2, 10, 240, 1680, 4704, 5880, 3360, 840, 80, 2, 11, 330, 2970, 11088, 19404, 16632, 6930, 1320, 99, 2
Offset: 2

Views

Author

David Callan, Jul 25 2005

Keywords

Comments

T(n,k) is the number of Dyck n-paths (A000108) containing k long interior inclines. An incline is an ascent or a descent where an ascent (resp. descent) is a maximal sequence of contiguous upsteps (resp. downsteps). An incline is long if it consists of at least 2 steps and is interior if it does not start or end the path.
T(n,k) is the number of Dyck (n+1)-paths whose last descent has length 2 and which contain n-k peaks. For example T(3,0)=3 counts UUDUDUDD, UDUUDUDD, UDUDUUDD. - David Callan, Jul 03 2006
T(n,k) is the number of parallelogram polyominoes of semiperimeter n+1 having k corners. - Emeric Deutsch, Oct 09 2008
T(n,k) is the number of rooted ordered trees with n non-root nodes and k leaves; see example. - Joerg Arndt, Aug 18 2014

Examples

			Table begins
\ k..0....1....2....3....4....5
n\
2 |..2
3 |..3....2
4 |..4....8....2
5 |..5...20...15....2
6 |..6...40...60...24....2
7 |..7...70..175..140...35....2
The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3.
From _Joerg Arndt_, Aug 18 2014: (Start)
The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
:     1:  [ 0 1 1 1 ]   2
:  O--o
:  .--o
:  .--o
:
:     2:  [ 0 1 1 2 ]   2
:  O--o
:  .--o--o
:
:     3:  [ 0 1 2 1 ]   1
:  O--o--o
:  .--o
:
:     4:  [ 0 1 2 2 ]   1
:  O--o--o
:     .--o
:
:     5:  [ 0 1 2 3 ]   1
:  O--o--o--o
:
This gives [3, 2], row n=3 of the triangle.
(End)
		

Crossrefs

Row sums are the Catalan numbers A000108. Column k=1 is A007290, k=2 is A006470. The Narayana numbers A001263 count Dyck paths by number of long nonterminal inclines. A091894 (Touchard distribution) counts Dyck paths by number of long nonterminal descents.
Cf. A145596.

Programs

  • Maple
    T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; Emeric Deutsch, Jul 23 2006
  • Mathematica
    T[n_, 0] = n;
    T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))];
    Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Werner Schulte *)

Formula

T(n, k) = 2*binomial(n+1, k+2)*binomial(n-2, k)/(n+1).
G.f.: G(z, t) = Sum_{n>=1, k>=0} T(n, k)*z^n*t^k satisfies z - ( (1-z)^2 - (2*t-t^2)*z^2 )*G + (t^2*z)*G^2 = 0.
G.f.: 1+z(1+r)^2, where r=r(t,z) is the Narayana function defined by (1+r)*(1+tr)z=r, r(t,0)=0. - Emeric Deutsch, Jul 23 2006
For n >= 0, the row polynomials Sum_{k=0..n} T(n+2,k)*x^k = (2/(n+1))*(1-x)^n*P(n,2,1,(1+x)/(1-x)), where P(n,a,b,x) denotes the Jacobi polynomial. It follows that the row polynomials have negative real zeros. - Peter Bala, Jan 21 2008
The trivariate g.f. G=G(t,s,z) of Dyck paths with respect to number of DUU's (marked by t), number of DDU's (marked by s) and semilength (marked by z) satisfies G = 1 + z*G + z^2*(1+t*(G-1))*(1+s*(G-1))/(1-z*(1+t*s*(G-1))) (the number of long interior inclines is equal to the number of DUU and DDU's). - Emeric Deutsch, Oct 09 2008
Recurrence: T(n, k) = T(n, k-1)*(n-1-k)*(n-k)/(k*(k+2)) for k > 0 and n >= 2. - Werner Schulte, Jan 04 2017
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n+1, k+2)*binomial(-n-2, k)/(-n+1) = -A145596(n+k,k+1) for n >= 2. - Peter Bala, Apr 26 2022
Showing 1-3 of 3 results.