cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007290 a(n) = 2*binomial(n,3).

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0

Views

Author

Keywords

Comments

Number of acute triangles made from the vertices of a regular n-polygon when n is even (cf. A000330). - Sen-Peng Eu, Apr 05 2001
a(n+2) is (-1)*coefficient of X in Zagier's polynomial (n,n-1). - Benoit Cloitre, Oct 12 2002
Definite integrals of certain products of 2 derivatives of (orthogonal) Chebyshev polynomials of the 2nd kind are pi-multiple of this sequence. For even (p+q): Integrate[ D[ChebyshevU[p, x], x] D[ChebyshevU[q, x], x] (1 - x^2)^(1/2), {x,-1,1}] / Pi = a(n), where n=Min[p,q]. Example: a(3)=20 because Integrate[ D[ChebyshevU[3, x], x] D[ChebyshevU[5, x], x] (1 - x^2)^(1/2), {x,-1,1}]/Pi = 20 since 3=Min[3,5] and 3+5 is even. - Christoph Pacher (Christoph.Pacher(AT)arcs.ac.at), Dec 16 2004
If Y is a 2-subset of an n-set X then, for n>=3, a(n-1) is the number of 3-subsets and 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is also the number of proper colorings of the cycle graph Csub3 (also the complete graph Ksub3) when n colors are available. - Gary E. Stevens, Dec 28 2008
a(n) is the reverse Wiener index of the path graph with n vertices. See the Balaban et al. reference, p. 927.
For n > 1: a(n) = sum of (n-1)-th row of A141418. - Reinhard Zumkeller, Nov 18 2012
This is the sequence for nuclear magic numbers in an idealized spherical nucleus under the harmonic oscillator model. - Jess Tauber, May 20 2013
Shifted non-vanishing diagonal of A132440^3/3. Second subdiagonal of A238363 (without zeros). For n>0, a(n+2)=n*(n+1)*(n+2)/3. Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014
a(n) is the number of ordered rooted trees with n non-root nodes that have 2 leaves; see A108838. - Joerg Arndt, Aug 18 2014
Number of floating point multiplications in the factorization of an (n-1)X(n-1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018
a(n+1) = Max_{s in S_n} Sum_{k=1..n} (k - s(k))^2 where S_n is the symmetric group of permutations of [1..n]; this maximum is obtained with the permutation s = (1, n) (2, n-1) (3, n-2) ... (k, n-k+1). (see Protat reference). - Bernard Schott, Dec 26 2022

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
  • Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059419. Partial sums of A002378.
A diagonal of A008291. Row 3 of A074650.

Programs

  • Haskell
    a007290 n = if n < 3 then 0 else 2 * a007318 n 3  -- Reinhard Zumkeller, Nov 18 2012
    
  • Magma
    I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
    
  • Maple
    A007290 := proc(n) 2*binomial(n,3) end proc:
  • Mathematica
    Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
    LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
    
  • PARI
    apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021

Formula

G.f.: 2*x^3/(1-x)^4.
a(n) = a(n-1)*n/(n-3) = a(n-1) + A002378(n-2) = 2*A000292(n-2) = Sum_{i=0..n-2} i*(i+1) = n*(n-1)*(n-2)/3. - Henry Bottomley, Jun 02 2000 [Formula corrected by R. J. Mathar, Dec 13 2010]
a(n) = A000217(n-2) + A000330(n-2), n>1. - Reinhard Zumkeller, Mar 20 2008
a(n+1) = A000330(n) - A000217(n), n>=0. - Zak Seidov, Aug 07 2010
a(n) = A033487(n-2) - A052149(n-1) for n>1. - Bruno Berselli, Dec 10 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012
a(n) = (2*n - 3*n^2 + n^3)/3. - T. D. Noe, May 20 2013
a(n+1) = A002412(n) - A000330(n) or "Hex Pyramidal" - "Square Pyramidal" (as can also be seen via above formula). - Richard R. Forberg, Aug 07 2013
Sum_{n>=3} 1/a(n) = 3/4. - Enrique Pérez Herrero, Nov 10 2013
E.g.f.: exp(x)*x^3/3. - Geoffrey Critzer, Nov 22 2015
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 3. - Danny Rorabaugh, Nov 10 2017
(a(n) + a(n+1))/2 = A000330(n-1). - Ezhilarasu Velayutham, Apr 05 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 6*log(2) - 15/4. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{m=0..n-2} Sum_{k=0..n-2} abs(m-k). - Nicolas Bělohoubek, Nov 06 2022
From Bernard Schott, Jan 04 2023: (Start)
a(n) = 2 * A000292(n-2), for n >= 2.
a(n+1) = 2 *Sum_{k=1..floor(n/2)} (n-(2k-1))^2, for n >= 2. (End)

A145596 Triangular array of generalized Narayana numbers: T(n, k) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 20, 20, 4, 5, 40, 75, 40, 5, 6, 70, 210, 210, 70, 6, 7, 112, 490, 784, 490, 112, 7, 8, 168, 1008, 2352, 2352, 1008, 168, 8, 9, 240, 1890, 6048, 8820, 6048, 1890, 240, 9, 10, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 10
Offset: 1

Views

Author

Peter Bala, Oct 14 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from (0,0) and finishing at points on the horizontal line y = 1, which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 1 of the generalized Narayana numbers N_r(n, k) := (r + 1)/(n + 1)*binomial(n + 1, k + r)*binomial(n + 1, k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with row numbering starting at n = 0). For other cases see A145597 (r = 2), A145598 (r = 3) and A145599 (r = 4).
T(n,k) is the number of preimages of the permutation 21345...(n+2) under West's stack-sorting map that have exactly k descents. - Colin Defant, Sep 15 2018
T(n+k+1,k+1) equals the number of tilings of an octagon with internal angles of 135 degrees and sides of lengths n, k, 1, 1, n, k, 1, 1 using unit rhombi with internal angles 45 degrees and 135 degrees. See Elnitzky, Theorem 5.1. - Peter Bala, Apr 25 2022

Examples

			n\k|..1.....2....3.....4.....5.....6
====================================
.1.|..1
.2.|..2.....2
.3.|..3.....8....3
.4.|..4....20...20.....4
.5.|..5....40...75....40.....5
.6.|..6....70..210...210....70.....6
...
Row 3 entries:
T(3,1) = 3: the 3 walks from (0,0) to (-2,1) of three steps are LLU, LUL and ULL.
T(3,2) = 8: the 8 walks from (0,0) to (0,1) of three steps are UDU, UUD, ULR, URL, RLU, LRU, RUL and LUR.
T(3,3) = 3: the 3 walks from (0,0) to (2,1) of three steps are RRU, RUR and URR.
.
.
*......*......*......y......*......*......*
.
.
*......3......*......8......*......3......*
.
.
*......*......*......o......*......*......* x-axis
.
.
		

Crossrefs

Programs

  • Magma
    /* As triangle */  [[2/(n+1)*Binomial(n+1,k+1)*Binomial(n+1,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Sep 15 2018
  • Maple
    T:= (n, k) -> 2/(n+1)*binomial(n+1, k+1)*binomial(n+1, k-1):
    for n from 1 to 10 do seq(T(n,k), k = 1..n) end do;
  • Mathematica
    t[n_, k_]:=2/(n+1) Binomial[n+1, k+1] Binomial[n+1, k-1]; Table[t[n, k], {n, 3, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Sep 15 2018 *)

Formula

T(n,k) = 2/(n + 1)*binomial(n + 1,k + 1)*binomial(n + 1,k - 1) for 1 <= k <= n. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n - 1,1).
O.g.f. for column (k + 2): 2/(k + 1) * y^(k+2)/(1 - y)^(k+4) * Jacobi_P(k,2,1,(1 + y)/(1 - y)). The column generating functions begin: column 2: 2*y^2/(1 - y)^4; column 3: y^3*(3 + 2*y)/(1 - y)^6; column 4: y^4*(4 + 8*y + 2*y^2)/(1 - y)^8; the polynomials in the numerators are the row generating polynomials of array A108838.
O.g.f. for array: 1/(2*x*y^3) * (((1 + x)*y - 1)*sqrt(1 - 2*(1 + x)*y + (y - x*y)^2) + x^2*y^2 - 2*x*y + (1 - y)^2) = x*y + (2*x + 2*x^2)*y^2 + (3*x + 8*x^2 + 3*x^3)*y^3 + (4*x + 20*x^2 + 20*x^3 + 4*x^4)*y^4 + ... .
Row sums A002057.
Identities for row polynomials R_n(x) = Sum_{k = 1..n} T(n,k)*x^k (compare with the results in section 1 of [Mansour & Sun]):
x*R_(n-1)(x) = 2*(n - 1)/((n + 1)*(n + 2)) * Sum_{k = 0..n} binomial(n + 2,k) * binomial(2*n - k,n) * (x - 1)^k;
R_n(x) = Sum_{k = 0..floor((n-1)/2)} binomial(n, 2*k + 1) * Catalan(k + 1) * x^(k+1)*(1 + x)^(n-2k-1);
Sum_{k = 1..n} (-1)^(n-k)*binomial(n,k)*R_k(x)*(1 + x)^(n-k) = x^m*Catalan(m) if n = 2*m - 1 is odd, otherwise the sum is zero.
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n+1) = 4/(n + 3)*binomial(2*n + 1,n - 1)*x^(n+1) = A002057(n-1)*x^(n+1).
Row generating polynomial R_(n+1)(x) = 2/(n + 2)*x*(1 - x)^n * Jacobi_P(n,2,2,(1 + x)/(1 - x)). - Peter Bala, Oct 31 2008
G.f. satisfies x^3*y*A(x,y)^2-A(x,y)*(x^2*y^2+(-2)*x*y+x^2+(-2)*x+1)+x = 0. - Vladimir Kruchinin, Oct 11 2020
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n + 1, k + 1)*binomial(-n + 1, k - 1)/(-n + 1) = -A108838(n+k-1,k-1) for n >= 2. - Peter Bala, Apr 26 2022
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator x^2*D*(1/x)*D, where D denotes the derivative operator d/dx. Then 48(1+n)/((n+2)!(n+4)!)* E^n(x^2/(1 - x)^5) = (row n generating polynomial)/(1 - x)^(2*n+5) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).
For example, when n = 3 we have 1/3150*E^3(x^2/(1 - x)^5) = x^2 (4 + 20x + 20x^2 + 4x^3)/(1 - x)^11. (End)

A006470 Number of tree-rooted planar maps with 3 faces and n vertices and no isthmuses.

Original entry on oeis.org

2, 15, 60, 175, 420, 882, 1680, 2970, 4950, 7865, 12012, 17745, 25480, 35700, 48960, 65892, 87210, 113715, 146300, 185955, 233772, 290950, 358800, 438750, 532350, 641277, 767340, 912485, 1078800, 1268520, 1484032, 1727880, 2002770, 2311575, 2657340, 3043287, 3472820, 3949530, 4477200, 5059810, 5701542, 6406785, 7180140
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ordered rooted trees with n+3 non-root nodes that have 3 leaves; see A108838. - Joerg Arndt, Aug 18 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A342987.

Programs

Formula

a(n) = (n+1)*binomial(n+3, 4).
a(n) = A027789(n)/2.
From Zerinvary Lajos, Dec 14 2005: (Start)
a(n) = binomial(n+2, 2)*binomial(n+4, 3)/2;
G.f.: x*(2+3*x)/(1-x)^6. (End)
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = n*(n+1)^2*(n+2)*(n+3)/24. (End)
Sum_{n>=1} 1/a(n) = 61/3 - 2*Pi^2. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2 - 16*log(2) + 5/3. - Amiram Eldar, Jan 28 2022

Extensions

Name clarified by Andrew Howroyd, Apr 03 2021

A281260 Triangular array of generalized Narayana numbers T(n,k) = 2*binomial(n+1,k)* binomial(n-2,k-1)/(n+1) for n >= 1 and 0 <= k <= n-1, read by rows.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 8, 4, 0, 2, 15, 20, 5, 0, 2, 24, 60, 40, 6, 0, 2, 35, 140, 175, 70, 7, 0, 2, 48, 280, 560, 420, 112, 8, 0, 2, 63, 504, 1470, 1764, 882, 168, 9, 0, 2, 80, 840, 3360, 5880, 4704, 1680, 240, 10, 0, 2, 99, 1320, 6930, 16632, 19404, 11088, 2970, 330, 11, 0, 2, 120, 1980, 13200, 41580
Offset: 1

Views

Author

Werner Schulte, Jan 18 2017

Keywords

Comments

The current array is the case m = 1 of the generalized Narayana numbers N_m(n,k) := (m+1)/(n+1)*binomial(n+1,k)*binomial(n-m-1,k-1) for m >= 0, n >= m and 0 <= k <= n-m with N_m(n,0) = A000007(n-m). Case m = 0 gives the table of Narayana numbers A001263 without leading column N_0(n,0) = A000007(n). For m = 2 see A281293, and for m = 3 see A281297. For combinatorial interpretations see the link to: David Callan, Generalized Narayana Numbers.
The polynomials p(m,n,x) = Sum_{k=0..n-m} N_m(n,k)*x^k satisfy the recurrence equation: x*p"(m,n,x) = n*(n-m-1)*p(m,n-1,x) for n > m >= 0 (p" is the second derivative of p), i.e.: k*(k-1)*N_m(n,k) = n*(n-m-1)*N_m(n-1,k-1) for k > 0 and n > m >= 0. Furthermore: Sum_{k=0..n-m} binomial(n+1-k,m+1)*N_m(n,k) = binomial(n,m)*A088218(n-m) for n >= m >= 0.
There is a relationship of these N_m(n,k) to those N_r(n,k) of A145596 (see the second comment): N_m(n+1,k) = N_r(n,k)*binomial(k+r,r)/binomial(n,r) for k >= 1 and 1 <= m = r <= n, and alternatively: N_r(n,k) = N_m(n+1,k)*binomial(n,m)/ binomial(k+m,m).
Conjecture: Sum_{k=1..n-m} binomial(n+1-k,m) * N_m(n,k) * A103365(n+1-m-k) = (m+1)^2 * A000007(n-m-1) for n > m >= 0.

Examples

			The triangle begins:
n\k:  0  1    2     3      4      5      6      7      8     9   10  11  . . .
01 :  1
02 :  0  2
03 :  0  2    3
04 :  0  2    8     4
05 :  0  2   15    20      5
06 :  0  2   24    60     40      6
07 :  0  2   35   140    175     70      7
08 :  0  2   48   280    560    420    112      8
09 :  0  2   63   504   1470   1764    882    168      9
10 :  0  2   80   840   3360   5880   4704   1680    240    10
11 :  0  2   99  1320   6930  16632  19404  11088   2970   330   11
12 :  0  2  120  1980  13200  41580  66528  55440  23760  4950  440  12
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[2 Binomial[n + 1, k] Binomial[n - 2, k - 1]/(n + 1), {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jan 19 2017 *)

Formula

Row sums are A033184(n+1,2).
The same triangle as A108838 with reversed rows but without leading column.
G.f.: ((x*y-x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+x^2*y^2+(-2*x^2-2*x)*y+x^2+1)/(2*x). - Vladimir Kruchinin, Oct 11 2020
G.f. satisfies x*A(x,y)^2-(x^2*y^2+((-2)*x^2-2*x)*y+x^2+1)*A(x,y)+x=0. - Vladimir Kruchinin, Oct 11 2020
Showing 1-4 of 4 results.