cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1

Views

Author

Keywords

Comments

Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)

Examples

			The initial rows of the triangle are:
  [1] 1
  [2] 1,  1
  [3] 1,  3,   1
  [4] 1,  6,   6,    1
  [5] 1, 10,  20,   10,    1
  [6] 1, 15,  50,   50,   15,    1
  [7] 1, 21, 105,  175,  105,   21,   1
  [8] 1, 28, 196,  490,  490,  196,  28,  1
  [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
  ...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
  A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
  so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
  = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
  First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4,  P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
  • P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).

Crossrefs

Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • GAP
    Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
  • Haskell
    a001263 n k = a001263_tabl !! (n-1) !! (k-1)
    a001263_row n = a001263_tabl !! (n-1)
    a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
       dt us vs = zipWith (-) (zipWith (*) us (tail vs))
                              (zipWith (*) (tail us ++ [0]) (init vs))
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    /* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k;
    a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end:
    # Alternatively, as a (0,0)-based triangle:
    R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
  • Mathematica
    T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
    Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *)
    TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
    Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k == n or k == 1: return 1
        if k <= 0 or k > n: return 0
        return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
    for n in (1..9): print([T(n, k) for k in (1..n)])  # Peter Luschny, Oct 28 2014
    

Formula

a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A002057 Fourth convolution of Catalan numbers: a(n) = 4*binomial(2*n+3,n)/(n+4).

Original entry on oeis.org

1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248, 32798844771700, 124680849918352
Offset: 0

Views

Author

Keywords

Comments

a(n) is sum of the (flattened) list obtained by the iteration of: replace each integer k with the list 0,...,k+1 on the starting value 0. Length of this list is Catalan(n) or A000108. - Wouter Meeussen, Nov 11 2001
a(n-2) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 3 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+2,n-1). - Emeric Deutsch, May 30 2004
a(n) = CatalanNumber(n+3) - 2*CatalanNumber(n+2). Proof. From its definition as a convolution of Catalan numbers, a(n) counts lists of 4 Dyck paths of total size (semilength) = n. Connect the 4 paths by 3 upsteps (U) and append 3 downsteps (D). This is a reversible procedure. So a(n) is also the number of Dyck (n+3)-paths that end DDD (D for downstep). Let C(n) denote CatalanNumber(n) (A000108). Since C(n+3) is the total number of Dyck (n+3)-paths and C(n+2) is the number that end UD, we have (*) C(n+3) - C(n+2) is the number of Dyck (n+3)-paths that end DD. Also, (**) C(n+2) is the number of Dyck (n+3)-paths that end UDD (change the last D in a Dyck (n+2)-path to UDD). Subtracting (**) from (*) yields a(n) = C(n+3) - 2C(n+2) as claimed. - David Callan, Nov 21 2006
Convolution square of the Catalan sequence without one of the initial "1"'s: (1 + 4x + 14x^2 + 48x^3 + ...) = (1/x^2) * square(x + 2x^2 + 5x^3 + 14x^4 + ...)
a(n) is the number of binary trees with n+3 internal nodes in which both subtrees of the root are nonempty. Cf. A068875 [Sedgewick and Flajolet]. - Geoffrey Critzer, Jan 05 2013
With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding, i.e., do not contain a three-term monotone subsequence, for which the first ascent is at positions (4,5); for example, there are 48 123-avoiding permutations on n=7 for which the first ascent is at spots (4,5). See Connolly link. There it is shown in general that the k-th Catalan Convolution is the number of 123-avoiding permutations for which the first ascent is at (k, k+1). (For n=k, the first ascent is defined to be at positions (k,k+1) if the permutation is the decreasing permutation with no ascents.) - Anant Godbole, Jan 17 2014
With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding and for which the integer n is in the 4th spot; see Connolly link. - Anant Godbole, Jan 17 2014
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that have exactly one east step below the subdiagonal y = x-1. Details can be found in Section 3.1 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that bounce off the diagonal y = x to the right exactly once but do not bounce off y = x to the left. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that horizontally cross the diagonal y = x exactly once but do not cross the diagonal vertically. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
Apparently also Young tableaux of (non-partition) shape [n+1, 1, 1, n+1], see example file. - Joerg Arndt, Dec 30 2023

Examples

			From _Peter Bala_, Apr 14 2017: (Start)
This sequence appears on the main diagonal of a generalized Catalan triangle. Construct a lower triangular array (T(n,k)), n,k >= 0 by placing the sequence [0,0,0,1,1,1,1,...] in the first column and then filling in the remaining entries in the array using the rule T(n,k) = T(n,k-1) + T(n-1,k). The resulting array begins
  n\k| 0 1  2  3  4   5   6   7  ...
  ---+-------------------------------
   0 | 0
   1 | 0 0
   2 | 0 0  0
   3 | 1 1  1  1
   4 | 1 2  3  4  4
   5 | 1 3  6 10 14  14
   6 | 1 4 10 20 34  48  48
   7 | 1 5 15 35 69 117 165 165
   ...
(see Tedford 2011; this is essentially the array C_4(n,k) in the notation of Lee and Oh). Compare with A279004. (End)
		

References

  • Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_4(z).
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
  • Robert Sedgewick and Phillipe Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 225.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+4) for n=0, 1, 2, ..., array T as in A047072. Also a diagonal of A059365 and of A009766.
Cf. A001003.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A145596 (row sums), A279004.

Programs

  • GAP
    List([0..25],n->4*Binomial(2*n+3,n)/(n+4)); # Muniru A Asiru, Mar 05 2018
    
  • Magma
    [4*Binomial(2*n+3,n)/(n+4): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    a := n -> 32*4^n*GAMMA(5/2+n)*(1+n)/(sqrt(Pi)*GAMMA(5+n)):
    seq(a(n),n=0..23); # Peter Luschny, Dec 14 2015
    A002057List := proc(m) local A, P, n; A := [1]; P := [1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A002057List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Table[Plus@@Flatten[Nest[ #/.a_Integer:> Range[0, a+1]&, {0}, n]], {n, 0, 10}]
    Table[4 Binomial[2n+3,n]/(n+4),{n,0,30}] (* or *) CoefficientList[ Series[ (1-Sqrt[1-4 x]+2 x (-2+Sqrt[1-4 x]+x))/(2 x^4),{x,0,30}],x] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n+=2; 2*binomial(2*n, n-2) / n)}; /* Michael Somos, Jul 31 2005 */
    
  • PARI
    x='x+O('x^100); Vec((1-(1-4*x)^(1/2)+2*x*(-2+(1-4*x)^(1/2)+x))/(2*x^4)) \\ Altug Alkan, Dec 14 2015
    
  • SageMath
    [2*(n+1)*catalan_number(n+2)/(n+4) for n in (0..30)] # G. C. Greubel, May 27 2022

Formula

a(n) = A033184(n+4, 4) = 4*binomial(2*n+3, n)/(n+4) = 2*(n+1)*A000108(n+2)/(n+4).
G.f.: c(x)^4 with c(x) g.f. of A000108 (Catalan).
Row sums of A145596. Column 4 of A033184. By specializing the identities for the row polynomials given in A145596 we obtain the results a(n) = Sum_{k = 0..n} (-1)^k*binomial(n+1,k+1)*a(k)*4^(n-k) and a(n) = Sum_{k = 0..floor(n/2)} binomial(n+1,2*k+1) * Catalan(k+1) * 2^(n-2*k). From the latter identity we can derive the congruences a(2n+1) == 0 (mod 4) and a(2n) == Catalan(n+1) (mod 4). It follows that a(n) is odd if and only if n = (2^m - 4) for some m >= 2. - Peter Bala, Oct 14 2008
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=3, a(n-3) = (-1)^(n-3) * coeff(charpoly(A,x), x^3). - Milan Janjic, Jul 08 2010
G.f.: (1-sqrt(1-4*x) + 2*x*(-2+sqrt(1-4*x) + x))/(2*x^4). - Harvey P. Dale, May 05 2011
a(n+1) = A214292(2*n+4,n). - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence: (n+4)a(n) = 8*(2*n-1)*a(n-3) - 20*(n+1)*a(n-2) + 4*(2*n+5)*a(n-1). - Fung Lam, Jan 29 2014
D-finite with recurrence: (n+4)*a(n) - 2*(3*n+7)*a(n-1) + 4*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Jun 03 2014
Asymptotics: a(n) ~ 4^(n+3)/sqrt(4*Pi*n^3). - Fung Lam, Mar 31 2014
a(n) = 32*4^n*Gamma(5/2+n)*(1+n)/(sqrt(Pi)*Gamma(5+n)). - Peter Luschny, Dec 14 2015
a(n) = C(n+1) - 2*C(n) where C is Catalan number A000108. Yuchun Ji, Oct 18 2017 [Note: Offset is off by 2]
E.g.f.: d/dx ( 2*exp(2*x)*BesselI(2,2*x)/x ). - Ilya Gutkovskiy, Nov 01 2017
From Bradley Klee, Mar 05 2018: (Start)
With F(x) = 16/(1+sqrt(1-4*x))^4 g.f. of A002057, xi(x) = F(x/4)*(x/4)^2, K(16*x) = 2F1(1/2,1/2;1;16*x) g.f. of A002894, q(x) g.f. of A005797, and q'(x) g.f. of A274344:
K(x) = (1+sqrt(xi(x)))*K(xi(x)).
2*K(1-x) = (1+sqrt(xi(x)))*K(1-xi(x)).
q(x) = sqrt(q(xi(16*x)/16)) = q'(xi(16*x)/16)/sqrt(xi(16*x)/16). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4 + Pi/(18*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 183*log(phi)/(25*sqrt(5)) - 77/100, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^n*W(x) dx where W(x) = -x^(3/2)*(1 - x/2)*sqrt(4 - x)/Pi, defined on the open interval (0,4). - Karol A. Penson, Nov 13 2022

A145600 a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).

Original entry on oeis.org

1, 8, 75, 784, 8820, 104544, 1288287, 16359200, 212751396, 2821056160, 38013731756, 519227905728, 7174705330000, 100136810390400, 1409850293610375, 20002637245262400, 285732116760449700
Offset: 1

Views

Author

Peter Bala, Oct 14 2008

Keywords

Comments

Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145601, A145602 and A145603. This sequence is the central column taken from triangle A145596, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 1.

Examples

			a(2) = 8: the 8 walks from (0,0) to (0,1) of three steps are
UDU, UUD, URL, ULR, RLU, LRU, RUL and LUR.
		

References

  • M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842. - From N. J. A. Sloane, Feb 21 2013

Crossrefs

Programs

  • Maple
    a(n) := 1/n*binomial(2*n,n+1)*binomial(2*n,n-1);
    seq(a(n),n = 1..19);

Formula

a(n) = 1/n*binomial(2*n,n+1)*binomial(2*n,n-1).
a(n) = A135389(n-1)/(n+1). - R. J. Mathar, Jul 14 2013
D-finite with recurrence (n+1)^2*a(n) -4*n*(5*n-1)*a(n-1) +16*(2*n-3)^2*a(n-2)=0. - R. J. Mathar, Jul 14 2013

A145597 Generalized Narayana numbers, T(n, k) = 3/(n + 1)*binomial(n + 1, k + 2)*binomial(n + 1, k - 1), triangular array read by rows.

Original entry on oeis.org

1, 3, 3, 6, 15, 6, 10, 45, 45, 10, 15, 105, 189, 105, 15, 21, 210, 588, 588, 210, 21, 28, 378, 1512, 2352, 1512, 378, 28, 36, 630, 3402, 7560, 7560, 3402, 630, 36, 45, 990, 6930, 20790, 29700, 20790, 6930, 990, 45, 55, 1485, 13068, 50820, 98010, 98010
Offset: 2

Views

Author

Peter Bala, Oct 15 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 2 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 2 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145598 (r = 3) and A145599 (r = 4).
T(n,k) is the number of preimages of the permutation 3214567...(n+3) under West's stack-sorting map that have exactly k+1 descents. - Colin Defant, Sep 15 2018

Examples

			Triangle starts
n\k|..1.....2....3.....4.....5.....6
====================================
.2.|..1
.3.|..3.....3
.4.|..6....15....6
.5.|.10....45...45....10
.6.|.15...105..189...105....15
.7.|.21...210..588...588...210....21
...
Row 4: T(4,1) = 6: the 6 walks of length 4 from (0,0) to (-2,2) are LLUU, LULU, LUUL, ULLU, ULUL and UULL. Changing L to R in these walks gives the 6 walks from (0,0) to (2,2).
T(4,2) = 15: the 15 walks of length 4 from (0,0) to (0,2) are UUUD, UULR, UURL, UUDU,URUL, ULUR, URLU, ULRU, RUUL, LUUR, RLUU, LRUU, RULU, LURU and UDUU.
.
.
*......*......*......y......*......*......*
.
.
*......6......*.....15......*......6......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......o......*......*......* x axis
.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    T:= (n,k) -> 3/(n+1)*binomial(n+1,k+2)*binomial(n+1,k-1):
    for n from 2 to 11 do
    seq(T(n,k),k = 1..n-1);
    end do;
  • Mathematica
    Table[3/(n+1) Binomial[n+1,k+2]Binomial[n+1,k-1],{n,2,20},{k,n-1}]//Flatten (* Harvey P. Dale, Aug 12 2023 *)

Formula

T(n,k) = (3/(n+1))*binomial(n+1,k+2)*binomial(n+1,k-1) for n >=2 and 1 <= k <= n-1. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n,2). Row sums A003517.
O.g.f. for column k+2: 3/(k + 1) * y^(k+3)/(1 - y)^(k+5) * Jacobi_P(k,3,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-1} T(n,k)*x^k:
x^2*R_(n-1)(x) = 3*(n-1)*(n-2)/((n+1)*(n+2)*(n+3)) * Sum_{k = 0..n} binomial(n + 3,k) * binomial(2n - k,n) * (x - 1)^k;
Sum_{k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^n = 6/(n+4)*binomial(2n+1,n-2)*x^n = A003517(n)*x^n.
Row generating polynomial R_(n+2)(x) = 3/(n+3)*x*(1-x)^n * Jacobi_P(n,3,3,(1+x)/(1-x)). [Peter Bala, Oct 31 2008]
G.f.: x*y*A001263(x,y)^3. - Vladimir Kruchinin, Nov 14 2020

A108838 Triangle of Dyck paths counted by number of long interior inclines.

Original entry on oeis.org

2, 3, 2, 4, 8, 2, 5, 20, 15, 2, 6, 40, 60, 24, 2, 7, 70, 175, 140, 35, 2, 8, 112, 420, 560, 280, 48, 2, 9, 168, 882, 1764, 1470, 504, 63, 2, 10, 240, 1680, 4704, 5880, 3360, 840, 80, 2, 11, 330, 2970, 11088, 19404, 16632, 6930, 1320, 99, 2
Offset: 2

Views

Author

David Callan, Jul 25 2005

Keywords

Comments

T(n,k) is the number of Dyck n-paths (A000108) containing k long interior inclines. An incline is an ascent or a descent where an ascent (resp. descent) is a maximal sequence of contiguous upsteps (resp. downsteps). An incline is long if it consists of at least 2 steps and is interior if it does not start or end the path.
T(n,k) is the number of Dyck (n+1)-paths whose last descent has length 2 and which contain n-k peaks. For example T(3,0)=3 counts UUDUDUDD, UDUUDUDD, UDUDUUDD. - David Callan, Jul 03 2006
T(n,k) is the number of parallelogram polyominoes of semiperimeter n+1 having k corners. - Emeric Deutsch, Oct 09 2008
T(n,k) is the number of rooted ordered trees with n non-root nodes and k leaves; see example. - Joerg Arndt, Aug 18 2014

Examples

			Table begins
\ k..0....1....2....3....4....5
n\
2 |..2
3 |..3....2
4 |..4....8....2
5 |..5...20...15....2
6 |..6...40...60...24....2
7 |..7...70..175..140...35....2
The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3.
From _Joerg Arndt_, Aug 18 2014: (Start)
The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
:     1:  [ 0 1 1 1 ]   2
:  O--o
:  .--o
:  .--o
:
:     2:  [ 0 1 1 2 ]   2
:  O--o
:  .--o--o
:
:     3:  [ 0 1 2 1 ]   1
:  O--o--o
:  .--o
:
:     4:  [ 0 1 2 2 ]   1
:  O--o--o
:     .--o
:
:     5:  [ 0 1 2 3 ]   1
:  O--o--o--o
:
This gives [3, 2], row n=3 of the triangle.
(End)
		

Crossrefs

Row sums are the Catalan numbers A000108. Column k=1 is A007290, k=2 is A006470. The Narayana numbers A001263 count Dyck paths by number of long nonterminal inclines. A091894 (Touchard distribution) counts Dyck paths by number of long nonterminal descents.
Cf. A145596.

Programs

  • Maple
    T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; Emeric Deutsch, Jul 23 2006
  • Mathematica
    T[n_, 0] = n;
    T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))];
    Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Werner Schulte *)

Formula

T(n, k) = 2*binomial(n+1, k+2)*binomial(n-2, k)/(n+1).
G.f.: G(z, t) = Sum_{n>=1, k>=0} T(n, k)*z^n*t^k satisfies z - ( (1-z)^2 - (2*t-t^2)*z^2 )*G + (t^2*z)*G^2 = 0.
G.f.: 1+z(1+r)^2, where r=r(t,z) is the Narayana function defined by (1+r)*(1+tr)z=r, r(t,0)=0. - Emeric Deutsch, Jul 23 2006
For n >= 0, the row polynomials Sum_{k=0..n} T(n+2,k)*x^k = (2/(n+1))*(1-x)^n*P(n,2,1,(1+x)/(1-x)), where P(n,a,b,x) denotes the Jacobi polynomial. It follows that the row polynomials have negative real zeros. - Peter Bala, Jan 21 2008
The trivariate g.f. G=G(t,s,z) of Dyck paths with respect to number of DUU's (marked by t), number of DDU's (marked by s) and semilength (marked by z) satisfies G = 1 + z*G + z^2*(1+t*(G-1))*(1+s*(G-1))/(1-z*(1+t*s*(G-1))) (the number of long interior inclines is equal to the number of DUU and DDU's). - Emeric Deutsch, Oct 09 2008
Recurrence: T(n, k) = T(n, k-1)*(n-1-k)*(n-k)/(k*(k+2)) for k > 0 and n >= 2. - Werner Schulte, Jan 04 2017
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n+1, k+2)*binomial(-n-2, k)/(-n+1) = -A145596(n+k,k+1) for n >= 2. - Peter Bala, Apr 26 2022

A145598 Triangular array of generalized Narayana numbers: T(n, k) = 4*binomial(n+1, k+3)*binomial(n+1, k-1)/(n+1).

Original entry on oeis.org

1, 4, 4, 10, 24, 10, 20, 84, 84, 20, 35, 224, 392, 224, 35, 56, 504, 1344, 1344, 504, 56, 84, 1008, 3780, 5760, 3780, 1008, 84, 120, 1848, 9240, 19800, 19800, 9240, 1848, 120, 165, 3168, 20328, 58080, 81675, 58080, 20328, 3168, 165, 220, 5148, 41184, 151008
Offset: 3

Views

Author

Peter Bala, Oct 15 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 3 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 3 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145599 (r = 4).

Examples

			Triangle starts
  n\k|  1     2     3     4     5     6
  =====================================
   3 |  1
   4 |  4     4
   5 | 10    24    10
   6 | 20    84    84    20
   7 | 35   224   392   224    35
   8 | 56   504  1344  1344   504    56
  ...
Row 5: T(5,3) = 10: the 10 walks of length 5 from (0,0) to (2,3) are UUURR, UURUR, UURRU, URUUR, URURU, URRUU, RUUUR, RUURU, RURUU and RRUUU.
*
*......*......*......y......*......*......*
.
.
*.....10......*.....24......*.....10......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......o......*......*......* x axis
.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1):
    for n from 3 to 12 do seq(T(n, k), k = 1 .. n-2) end do;

Formula

T(n,k) = 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1) for n >=3 and 1 <= k <= n-2. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 1,3). Row sums A003518.
O.g.f. for column k+2: 4/(k + 1) * y^(k+4)/(1 - y)^(k+6) * Jacobi_P(k,4,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) = Sum_{k = 1 .. n - 2} T(n,k)*x^k:
x^3*R_(n-1)(x) = 4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)*(n + 4)) * Sum_{k = 0..n} binomial(n + 4,k) * binomial(2n - k,n) * (x - 1)^k;
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-1) = A003518(n)*x^(n-1).
Row generating polynomial R_(n+3)(x) = 4/(n+4)*x*(1-x)^n * Jacobi_P(n,4,4,(1+x)/(1-x)). - Peter Bala, Oct 31 2008
G.f.: A(x) = x*A145596(x)^2. - Vladimir Kruchinin, Oct 09 2020

A145599 Triangular array of generalized Narayana numbers: T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1).

Original entry on oeis.org

1, 5, 5, 15, 35, 15, 35, 140, 140, 35, 70, 420, 720, 420, 70, 126, 1050, 2700, 2700, 1050, 126, 210, 2310, 8250, 12375, 8250, 2310, 210, 330, 4620, 21780, 45375, 45375, 21780, 4620, 330, 495, 8580, 51480, 141570, 196625, 141570, 51480, 8580, 495, 715, 15015
Offset: 4

Views

Author

Peter Bala, Oct 15 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 4 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 4 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145598 (r = 3).

Examples

			Triangle starts
n\k|...1......2......3......4......5......6
===========================================
.4.|...1
.5.|...5......5
.6.|..15.....35.....15
.7.|..35....140....140.....35
.8.|..70....420....720....420.....70
.9.|.126...1050...2700...2700...1050....126
...
T(5,2) = 5: the 5 walks of length 5 from (0,0) to (1,4) are
UUUUR, UUURU, UURUU, URUUU and RUUUU.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    T:= (n,k) -> 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1):
    for n from 4 to 13 do
    seq(T(n,k),k = 1..n-3);
    end do;
  • Mathematica
    Table[5/(n+1) Binomial[n+1,k+4]Binomial[n+1,k-1],{n,4,20},{k,0,n}]/.(0-> Nothing)//Flatten (* Harvey P. Dale, Jan 25 2021 *)

Formula

T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1) for n >=4 and 1 <= k <= n-3. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 2,4). Row sums A003519.
O.g.f. for column k+2: 5/(k + 1) * y^(k+5)/(1 - y)^(k+7) * Jacobi_P(k,5,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-3} T(n,k)*x^k:
x^4*R_(n-1)(x) = 5*(n - 1)*(n - 2)*(n - 3)*(n - 4)/((n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)) * sum {k = 0..n} binomial(n + 5,k) * binomial(2n - k,n) * (x - 1)^k;
sum {k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-2) = A003519(n)*x^(n-2).
Row generating polynomial R_(n+4)(x) = 5/(n+5)*x*(1-x)^n * Jacobi_P(n,5,5,(1+x)/(1-x)). [From Peter Bala, Oct 31 2008]

A281260 Triangular array of generalized Narayana numbers T(n,k) = 2*binomial(n+1,k)* binomial(n-2,k-1)/(n+1) for n >= 1 and 0 <= k <= n-1, read by rows.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 8, 4, 0, 2, 15, 20, 5, 0, 2, 24, 60, 40, 6, 0, 2, 35, 140, 175, 70, 7, 0, 2, 48, 280, 560, 420, 112, 8, 0, 2, 63, 504, 1470, 1764, 882, 168, 9, 0, 2, 80, 840, 3360, 5880, 4704, 1680, 240, 10, 0, 2, 99, 1320, 6930, 16632, 19404, 11088, 2970, 330, 11, 0, 2, 120, 1980, 13200, 41580
Offset: 1

Views

Author

Werner Schulte, Jan 18 2017

Keywords

Comments

The current array is the case m = 1 of the generalized Narayana numbers N_m(n,k) := (m+1)/(n+1)*binomial(n+1,k)*binomial(n-m-1,k-1) for m >= 0, n >= m and 0 <= k <= n-m with N_m(n,0) = A000007(n-m). Case m = 0 gives the table of Narayana numbers A001263 without leading column N_0(n,0) = A000007(n). For m = 2 see A281293, and for m = 3 see A281297. For combinatorial interpretations see the link to: David Callan, Generalized Narayana Numbers.
The polynomials p(m,n,x) = Sum_{k=0..n-m} N_m(n,k)*x^k satisfy the recurrence equation: x*p"(m,n,x) = n*(n-m-1)*p(m,n-1,x) for n > m >= 0 (p" is the second derivative of p), i.e.: k*(k-1)*N_m(n,k) = n*(n-m-1)*N_m(n-1,k-1) for k > 0 and n > m >= 0. Furthermore: Sum_{k=0..n-m} binomial(n+1-k,m+1)*N_m(n,k) = binomial(n,m)*A088218(n-m) for n >= m >= 0.
There is a relationship of these N_m(n,k) to those N_r(n,k) of A145596 (see the second comment): N_m(n+1,k) = N_r(n,k)*binomial(k+r,r)/binomial(n,r) for k >= 1 and 1 <= m = r <= n, and alternatively: N_r(n,k) = N_m(n+1,k)*binomial(n,m)/ binomial(k+m,m).
Conjecture: Sum_{k=1..n-m} binomial(n+1-k,m) * N_m(n,k) * A103365(n+1-m-k) = (m+1)^2 * A000007(n-m-1) for n > m >= 0.

Examples

			The triangle begins:
n\k:  0  1    2     3      4      5      6      7      8     9   10  11  . . .
01 :  1
02 :  0  2
03 :  0  2    3
04 :  0  2    8     4
05 :  0  2   15    20      5
06 :  0  2   24    60     40      6
07 :  0  2   35   140    175     70      7
08 :  0  2   48   280    560    420    112      8
09 :  0  2   63   504   1470   1764    882    168      9
10 :  0  2   80   840   3360   5880   4704   1680    240    10
11 :  0  2   99  1320   6930  16632  19404  11088   2970   330   11
12 :  0  2  120  1980  13200  41580  66528  55440  23760  4950  440  12
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[2 Binomial[n + 1, k] Binomial[n - 2, k - 1]/(n + 1), {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jan 19 2017 *)

Formula

Row sums are A033184(n+1,2).
The same triangle as A108838 with reversed rows but without leading column.
G.f.: ((x*y-x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+x^2*y^2+(-2*x^2-2*x)*y+x^2+1)/(2*x). - Vladimir Kruchinin, Oct 11 2020
G.f. satisfies x*A(x,y)^2-(x^2*y^2+((-2)*x^2-2*x)*y+x^2+1)*A(x,y)+x=0. - Vladimir Kruchinin, Oct 11 2020

A352687 Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Offset: 0

Views

Author

Peter Luschny, Apr 26 2022

Keywords

Comments

This is the second triangle in a sequence of Narayana triangles. The first is A090181, whose n-th row is a refinement of Catalan(n), whereas here the n-th row of T is a refinement of 2*Catalan(n-1). We can show that T(n, k) <= A090181(n, k) for all n, k. The third triangle in this sequence is A353279, where also a recurrence for the general case is given.
Here we give a recurrence for the row polynomials, which correspond to the recurrence of the classical Narayana polynomials combinatorially proved by Sulanke (see link).
The polynomials have only real zeros and form a Sturm sequence. This follows from the recurrence along the lines given in the Chen et al. paper.
Some interesting sequences turn out to be the evaluation of the polynomial sequence at a fixed point (see the cross-references), for example the reversion of the Jacobsthal numbers A001045 essentially is -(-2)^n*P(n, -1/2).
The polynomials can also be represented as the difference between generalized Narayana polynomials, see the formula section.

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  2,   1;
[4] 0, 1,  4,   4,   1;
[5] 0, 1,  7,  12,   7,   1;
[6] 0, 1, 11,  30,  30,  11,   1;
[7] 0, 1, 16,  65, 100,  65,  16,   1;
[8] 0, 1, 22, 126, 280, 280, 126,  22,  1;
[9] 0, 1, 29, 224, 686, 980, 686, 224, 29, 1;
		

Crossrefs

Cf. A090181 and A001263 (Narayana), A353279 (case 3), A000108 (Catalan), A145596, A172392 (central terms), A000124 (subdiagonal, column 2), A115143.
Essentially twice the Catalan numbers: A284016 (also A068875, A002420).
Values of the polynomial sequence: A068875 (row sums): P(1), A154955: P(-1), A238113: P(2)/2, A125695 (also A152681): P(-2), A054872: P(3)/2, P(3)/6 probable A234939, A336729: P(-3)/6, A082298: P(4)/5, A238113: 2^n*P(1/2), A154825 and A091593: 2^n*P(-1/2).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then 0 else
    binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k))) / (n^2*(n - 1)*(n - k + 1)) fi:
    seq(seq(T(n, k), k = 0..n), n = 0..10);
    # Alternative:
    gf := 1 - x + (1 + y)*(1 - x*(y - 1) - sqrt((x*y + x - 1)^2 - 4*x^2*y))/2:
    serx := expand(series(gf, x, 16)): coeffy := n -> coeff(serx, x, n):
    seq(seq(coeff(coeffy(n), y, k), k = 0..n), n = 0..10);
    # Using polynomial recurrence:
    P := proc(n, x) option remember; if n < 3 then [1, x, x + x^2] [n + 1] else
    ((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(Trow(n), n = 0..10);
    # Represented by generalized Narayana polynomials:
    N := (n, k, x) -> add(((k+1)/(n-k))*binomial(n-k,j-1)*binomial(n-k,j+k)*x^(j+k), j=0..n-2*k): seq(print(ifelse(n=0, 1, expand(N(n,0,x) - N(n,1,x)))), n=0..7);
  • Mathematica
    H[0, ] := 1; H[1, x] := x;
    H[n_, x_] := x*(x + 1)*Hypergeometric2F1[1 - n, 2 - n, 2, x];
    Hrow[n_] := CoefficientList[H[n, x], x]; Table[Hrow[n], {n, 0, 9}] // TableForm
  • Python
    from math import comb as binomial
    def T(n, k):
        if k == n: return 1
        if k == 0: return 0
        return ((binomial(n, k)**2 * (k * (2 * k**2 + (n + 1) * (n - 2 * k))))
               // (n**2 * (n - 1) * (n - k + 1)))
    def Trow(n): return [T(n, k) for k in range(n + 1)]
    for n in range(10): print(Trow(n))
    
  • Python
    # The recursion with cache is (much) faster:
    from functools import cache
    @cache
    def T_row(n):
        if n < 3: return ([1], [0, 1], [0, 1, 1])[n]
        A = T_row(n - 2) + [0, 0]
        B = T_row(n - 1) + [1]
        for k in range(n - 1, 1, -1):
            B[k] = (((B[k] + B[k - 1]) * (2 * n - 3)
                   - (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 3)) // n)
        return B
    for n in range(10): print(T_row(n))

Formula

Explicit formula (additive form):
T(n, n) = 1, T(n > 0, 0) = 0 and otherwise T(n, k) = binomial(n, k)*binomial(n - 1, k - 1)/(n - k + 1) - 2*binomial(n - 1, k)*binomial(n - 1, k - 2)/(n - 1).
Multiplicative formula with the same boundary conditions:
T(n, k) = binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k)))/(n^2*(n-1)*(n- k + 1)).
Bivariate generating function:
T(n, k) = [x^n] [y^k](1 - x + (1+y)*(1-x*(y-1) - sqrt((x*y+x-1)^2 - 4*x^2*y))/2).
Recursion based on polynomials:
T(n, k) = [x^k] (((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n) with P(0, x) = 1, P(1, x) = x, and P(2, x) = x + x^2.
Recursion based on rows (see the second Python program):
T(n, k) = (((B(k) + B(k-1)) * (2*n - 3) - (A(k) - 2*A(k-1) + A(k-2))*(n-3))/n), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3.
Hypergeometric representation:
T(n, k) = [x^k] x*(x + 1)*hypergeom([1 - n, 2 - n], [2], x) for n >= 2.
Row sums:
Sum_{k=0..n} T(n, k) = (2/n)*binomial(2*(n - 1), n - 1) = A068875(n-1) for n >= 2.
A generalization of the Narayana polynomials is given by
N{n, k}(x) = Sum_{j=0..n-2*k}(((k + 1)/(n - k)) * binomial(n - k, j - 1) * binomial(n - k, j + k) * x^(j + k)).
N{n, 0}(x) are the classical Narayana polynomials A001263 and N{n, 1}(x) is a shifted version of A145596 based in (3, 2). Our polynomials are the difference P(n, x) = N{n, 0}(x) - N{n, 1}(x) for n >= 1.
Let RS(T, n) denote the row sum of the n-th row of T, then RS(T, n) - RS(A090181, n) = -4*binomial(2*n - 3, n - 3)/(n + 1) = A115143(n + 1) for n >= 3.

A214457 Table read by antidiagonals in which entry T(n,k) in row n and column k gives the number of possible rhombus tilings of an octagon with interior angles of 135 degrees and sequences of side lengths {n, k, 1, 1, n, k, 1, 1} (as the octagon is traversed), n,k in {1,2,3,...}.

Original entry on oeis.org

8, 20, 20, 40, 75, 40, 70, 210, 210, 70, 112, 490, 784, 490, 112, 168, 1008, 2352, 2352, 1008, 168, 240, 1890, 6048, 8820, 6048, 1890, 240, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 440, 5445, 29040, 76230, 104544, 76230, 29040, 5445, 440
Offset: 1

Views

Author

L. Edson Jeffery, Jul 18 2012

Keywords

Comments

Proof of the formula for T(n,k) is given in [Elnitsky].
So-called "generalized Narayana numbers" (see A145596), linking rhombus tilings of polygons to certain walks or paths through the square lattice.

Examples

			See [Jeffery]. T(1,1) = 8 because there are eight ways to tile the proposed octagon with rhombuses.
Table begins as
    8    20    40     70    112  ...
   20    75   210    490   1008  ...
   40   210   784   2352   6048  ...
   70   490  2352   8820  27720  ...
  112  1008  6048  27720  76230  ...
  ...
		

Crossrefs

Empirical: T(1,n) = T(n,1) = 2*A000292(n+1); T(2,n) = T(n,2) = A006411(n+1); T(n,n) = A145600(n+1).

Programs

  • Mathematica
    Table[2*(# + k + 1)!*(# + k + 2)!/(#!*k!*(# + 2)!*(k + 2)!) &[n - k + 1], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Feb 26 2024 *)

Formula

T(n,k) = 2*(n+k+1)!*(n+k+2)!/[n!*k!*(n+2)!*(k+2)!].
Showing 1-10 of 10 results.