cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289834 Number of perfect matchings on n edges which represent RNA secondary folding structures characterized by the Lyngso and Pedersen (L&P) family and the Cao and Chen (C&C) family.

Original entry on oeis.org

1, 1, 3, 11, 39, 134, 456, 1557, 5364, 18674, 65680, 233182, 834796, 3010712, 10929245, 39904623, 146451871, 539972534, 1999185777, 7429623640, 27705320423, 103636336176, 388775988319, 1462261313876, 5513152229901, 20832701135628, 78884459229627
Offset: 0

Views

Author

Kyle Goryl, Jul 13 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 3, 11][n+1],
          (2*(74*n^2-69*n-110)*a(n-1)-3*(89*n^2-139*n-70)*a(n-2)+
           2*(91*n^2-204*n-52)*a(n-3)-4*(5*n+1)*(2*n-7)*a(n-4))
           /((n+2)*(23*n-43)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 13 2017
  • Mathematica
    c[n_] := c[n] = CatalanNumber[n];
    b[n_] := b[n] = If[n<2, 0, 2+((5n-9) b[n-1] - (4n-2) b[n-2])/(n-1)];
    a[n_] := Sum[c[i] Sum[c[j]-(n-i), {j, 1, n-i}], {i, 0, n-2}] + b[n] + c[n];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 29 2020 *)
  • Python
    from functools import cache
    @cache
    def a(n):
        return (
            [1, 1, 3, 11][n]
            if n < 4
            else (
                  2 * (74 * n ** 2 - 69 * n - 110) * a(n - 1)
                - 3 * (89 * n ** 2 - 139 * n - 70) * a(n - 2)
                + 2 * (91 * n ** 2 - 204 * n - 52) * a(n - 3)
                - 4 * (5 * n + 1) * (2 * n - 7) * a(n - 4)
            )
            // ((n + 2) * (23 * n - 43))
        )
    print([a(n) for n in range(27)])
    # Indranil Ghosh, Jul 15 2017, after Maple code, updated by Peter Luschny, Nov 29 2020

Formula

a(n) = Sum_{i=0..n-2} C_i*(Sum_{j=1..n-i} C_j - (n-i)) + C_n where C is A000108.
From Vaclav Kotesovec, Jul 13 2017: (Start)
D-finite recurrence (of order 3): (n+2)*(41*n^3 - 228*n^2 + 391*n - 180)*a(n) = 6*(41*n^4 - 187*n^3 + 192*n^2 + 120*n - 160)*a(n-1) - 3*(3*n - 4)*(41*n^3 - 146*n^2 + 83*n + 70)*a(n-2) + 2*(2*n - 5)*(41*n^3 - 105*n^2 + 58*n + 24)*a(n-3).
a(n) ~ 41 * 4^n / (9*sqrt(Pi)*n^(3/2)).
(End)

Extensions

More terms from Alois P. Heinz, Jul 13 2017