cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Kyle Goryl

Kyle Goryl's wiki page.

Kyle Goryl has authored 2 sequences.

A289834 Number of perfect matchings on n edges which represent RNA secondary folding structures characterized by the Lyngso and Pedersen (L&P) family and the Cao and Chen (C&C) family.

Original entry on oeis.org

1, 1, 3, 11, 39, 134, 456, 1557, 5364, 18674, 65680, 233182, 834796, 3010712, 10929245, 39904623, 146451871, 539972534, 1999185777, 7429623640, 27705320423, 103636336176, 388775988319, 1462261313876, 5513152229901, 20832701135628, 78884459229627
Offset: 0

Author

Kyle Goryl, Jul 13 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 3, 11][n+1],
          (2*(74*n^2-69*n-110)*a(n-1)-3*(89*n^2-139*n-70)*a(n-2)+
           2*(91*n^2-204*n-52)*a(n-3)-4*(5*n+1)*(2*n-7)*a(n-4))
           /((n+2)*(23*n-43)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 13 2017
  • Mathematica
    c[n_] := c[n] = CatalanNumber[n];
    b[n_] := b[n] = If[n<2, 0, 2+((5n-9) b[n-1] - (4n-2) b[n-2])/(n-1)];
    a[n_] := Sum[c[i] Sum[c[j]-(n-i), {j, 1, n-i}], {i, 0, n-2}] + b[n] + c[n];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 29 2020 *)
  • Python
    from functools import cache
    @cache
    def a(n):
        return (
            [1, 1, 3, 11][n]
            if n < 4
            else (
                  2 * (74 * n ** 2 - 69 * n - 110) * a(n - 1)
                - 3 * (89 * n ** 2 - 139 * n - 70) * a(n - 2)
                + 2 * (91 * n ** 2 - 204 * n - 52) * a(n - 3)
                - 4 * (5 * n + 1) * (2 * n - 7) * a(n - 4)
            )
            // ((n + 2) * (23 * n - 43))
        )
    print([a(n) for n in range(27)])
    # Indranil Ghosh, Jul 15 2017, after Maple code, updated by Peter Luschny, Nov 29 2020

Formula

a(n) = Sum_{i=0..n-2} C_i*(Sum_{j=1..n-i} C_j - (n-i)) + C_n where C is A000108.
From Vaclav Kotesovec, Jul 13 2017: (Start)
D-finite recurrence (of order 3): (n+2)*(41*n^3 - 228*n^2 + 391*n - 180)*a(n) = 6*(41*n^4 - 187*n^3 + 192*n^2 + 120*n - 160)*a(n-1) - 3*(3*n - 4)*(41*n^3 - 146*n^2 + 83*n + 70)*a(n-2) + 2*(2*n - 5)*(41*n^3 - 105*n^2 + 58*n + 24)*a(n-3).
a(n) ~ 41 * 4^n / (9*sqrt(Pi)*n^(3/2)).
(End)

Extensions

More terms from Alois P. Heinz, Jul 13 2017

A289031 Number of perfect matchings on n+3 edges which represent RNA secondary folding structures characterized by the Reeder and Giegerich and the Lyngso and Pedersen families, but not the family characterized by Cao and Chen.

Original entry on oeis.org

1, 8, 42, 186, 759, 2970, 11369, 43024, 161889, 607630, 2279156, 8552292, 32124073, 120828404, 455175495, 1717506346, 6491412107, 24575174688, 93187097419, 353912403794, 1346146363275, 5127660231072, 19559151930621, 74706450932970
Offset: 1

Author

Kyle Goryl, Jun 22 2017

Keywords

Comments

These matchings can be created inductively by beginning with a hairpin that has a single edge inserted into its middle, then inserting noncrossing matchings into the matching. Finally we can inflate the edges of the hairpin by ladders.

Crossrefs

Cf. A003517.

Formula

a(n) = 2*a(n-1) - a(n-2) + A003517(n+1).
D-finite recurrence: (n-1)*(n+5)*a(n) = 2*(3*n^2 + 9*n - 2)*a(n-1) - (3*n + 1)*(3*n + 7)*a(n-2) + 2*(n+1)*(2*n + 3)*a(n-3). - Vaclav Kotesovec, Jun 24 2017
a(n) ~ 2^(2*n+8) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 27 2017