cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289907 Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.

Original entry on oeis.org

1979, 5399, 11813, 41213, 42443, 44249, 47129, 55799, 57773, 74699, 79613, 84299, 88643, 126473, 143813, 148913, 167099, 176489, 178799, 178889, 209249, 211859, 237143, 266663, 267629, 272249, 272333, 322229, 344153, 348443, 354023, 375083, 391379, 399263, 422069, 449549, 521519, 529673
Offset: 1

Views

Author

Muniru A Asiru, Jul 14 2017

Keywords

Comments

All terms = {23, 29} mod 30.
For initial primes of 5 consecutive primes with consecutive gaps 2,4,6,8 see A190814.
Number of terms less than 10^k: 0, 0, 0, 2, 13, 65, 317, 1563, 8671, 50643, ..., . - Robert G. Wilson v, Dec 07 2017

Examples

			Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
		

Crossrefs

Programs

  • GAP
    I:=[8,6,4,2];;
    P:=Filtered([1..1000000],IsPrime);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;  Collected(last);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
    P3:=List(Positions(P2,I),i->P[i]);
    
  • Mathematica
    s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* Michael De Vlieger, Jul 14 2017 *)
    p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* Robert G. Wilson v, Dec 07 2017 *)
  • PARI
    is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ David A. Corneth, Jul 23 2017