A089676 a(n) is the maximal size of a set S of points in {0,1}^n in real n-dimensional Euclidean space such that every angle determined by three points in S is acute.
1, 2, 2, 4, 5, 6, 8, 9, 10, 16, 17
Offset: 0
Examples
a(3) = 4: {000, 011, 101, 110}. a(4) = 5: {0011, 0101, 0110, 1000, 1111}. The following sets are given by Bevan (2006), who also shows they are optimal: a(5) = 6: 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 a(6) = 8: 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 a(7) = 9: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 a(8) = 10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 For a(9) = 16 Bevan uses the construction in his Theorem 4.2, which shows that a(3k) >= a(k)^2 for all k, and then a computer search shows that this is optimal for k = 3. Let v0,v1,v2,v3 denote the four vectors for a(3). Then to get a(9)=16 use the vectors { v_i v_j v_{j-i mod 4}, 0 <= i,j <= 3 }. - _N. J. A. Sloane_, Mar 30 2016 a(10) = 17, from Hugues Randriambololona, Apr 08 2016: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 a(11) >= 23, from _Dmitry Kamenetsky_, Jan 05 2018: 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1
Links
- Eyal Ackerman and Oren Ben-Zwi, On sets of points that determine only acute angles, European Journal of Combinatorics 30 (2009) 908-910.
- N. Alon, Probabilistic Methods in Extremal Finite Set Theory
- D. Bevan, Sets of Points Determining Only Acute Angles and Some Related Coloring Problems, Electronic J. of Combinatorics, 13(1), 2006, #R12.
- L. Danzer and B. Grünbaum, Uber zwei Probleme bezüglich konvexer Körper von P. Erdős und von K. L. Klee, Math. Zeitschrift 79 (1962) 95-99.
- P. Erdős and Z. Füredi, The greatest angle among n points in the d-dimensional Euclidean space, Annals of Discrete Math. 17 (1983) 275-283.
- Viktor Harangi, Acute Sets In Euclidean Spaces, Journal on Discrete Mathematics, volume 25, issue 3, (2011) 1212-1229.
- Dmitry Kamenetsky, Lower bounds and their solutions for a(11-15)
- Math StackExchange, Tight Acute Sets
- Hugues Randriambololona, (2,1)-Separating systems beyond the probabilistic bound, Israel Journal of Mathematics, 195 (2013), 171-186; DOI: 10.1007/s11856-012-0126-9.
- Hugues Randriambololona, (2,1)-Separating systems beyond the probabilistic bound, arXiv:1010.5764 [math.CO], 2010-2012.
Crossrefs
Cf. A289972.
Formula
If k <= m <= n, a(k+2m) >= a(k)a(m), a(k+2m+3n) >= a(k)a(m)a(n).
a(n) >= 2*floor((sqrt(6)/9)(2/sqrt(3))^n), which is approximately 0.544*1.155^n.
Extensions
Edited by N. J. A. Sloane, Mar 29 2016 and Apr 08 2016
a(10) from Fausto A. C. Cariboni, Jul 17 2017
Comments