cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290031 Number of 6-cycles in the n-hypercube graph.

Original entry on oeis.org

0, 0, 0, 16, 128, 640, 2560, 8960, 28672, 86016, 245760, 675840, 1802240, 4685824, 11927552, 29818880, 73400320, 178257920, 427819008, 1016070144, 2390753280, 5578424320, 12918456320, 29712449536, 67914170368, 154350387200, 348966092800, 785173708800, 1758789107712
Offset: 0

Views

Author

Eric W. Weisstein, Jul 17 2017

Keywords

Crossrefs

Cf. A001788 (4-cycles).
Cf. A364688 (8-cycles).

Programs

  • Magma
    [2^(n + 1)*Binomial(n, 3): n in [0..30]]; // Wesley Ivan Hurt, Apr 21 2021
  • Mathematica
    Table[2^(n + 1) Binomial[n, 3], {n, 0, 20}]
    LinearRecurrence[{8, -24, 32, -16}, {0, 0, 0, 16}, 20]
    CoefficientList[Series[(16 x^3)/(-1 + 2 x)^4, {x, 0, 20}], x]
    Table[Length[FindCycle[HypercubeGraph[n], {6}, All]], {n, 0, 10}] (* Eric W. Weisstein, Aug 02 2023 *)

Formula

a(n) = 2^(n + 1)*binomial(n, 3).
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-4)-16*a(n-4).
G.f.: (16*x^3)/(-1 + 2*x)^4.
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=3} 1/a(n) = 3*(2*log(2)-1)/16.
Sum_{n>=3} (-1)^(n+1)/a(n) = (3/2)^3*log(3/2) - 21/16. (End)