A290031 Number of 6-cycles in the n-hypercube graph.
0, 0, 0, 16, 128, 640, 2560, 8960, 28672, 86016, 245760, 675840, 1802240, 4685824, 11927552, 29818880, 73400320, 178257920, 427819008, 1016070144, 2390753280, 5578424320, 12918456320, 29712449536, 67914170368, 154350387200, 348966092800, 785173708800, 1758789107712
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
Programs
-
Magma
[2^(n + 1)*Binomial(n, 3): n in [0..30]]; // Wesley Ivan Hurt, Apr 21 2021
-
Mathematica
Table[2^(n + 1) Binomial[n, 3], {n, 0, 20}] LinearRecurrence[{8, -24, 32, -16}, {0, 0, 0, 16}, 20] CoefficientList[Series[(16 x^3)/(-1 + 2 x)^4, {x, 0, 20}], x] Table[Length[FindCycle[HypercubeGraph[n], {6}, All]], {n, 0, 10}] (* Eric W. Weisstein, Aug 02 2023 *)
Formula
a(n) = 2^(n + 1)*binomial(n, 3).
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-4)-16*a(n-4).
G.f.: (16*x^3)/(-1 + 2*x)^4.
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=3} 1/a(n) = 3*(2*log(2)-1)/16.
Sum_{n>=3} (-1)^(n+1)/a(n) = (3/2)^3*log(3/2) - 21/16. (End)