cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290036 Number of set partitions of [n] having exactly seven blocks of size > 1.

Original entry on oeis.org

135135, 6756750, 186486300, 3765521760, 62239847670, 893865232260, 11567184248620, 138167790320560, 1549369653596765, 16513475306458130, 168849390493503720, 1668236066705023200, 16016472213542100300, 150103132298249730600, 1378211903535510443400
Offset: 14

Views

Author

Alois P. Heinz, Jul 18 2017

Keywords

Crossrefs

Column k=7 of A124324.
Cf. A290035.

Formula

E.g.f.: (exp(x)-x-1)^7/7!*exp(x).
G.f.: -(1865750631174144*x^21 -13945050326997504*x^20 +49328717299610112*x^19 -109804126032508544*x^18 +172501534253023360*x^17 -203317256909646880*x^16 +186573768183915112*x^15 -136528527507974140*x^14 +80943939197055550*x^13 -39285221171765415*x^12 +15705856242821360*x^11 -5186986300225730*x^10 +1414798298063150*x^9 -317670047760065*x^8 +58326655226840*x^7 -8663283789160*x^6 +1024105011930*x^5 -94030401465*x^4 +6459332880*x^3 -312161850*x^2 +9459450*x -135135)*x^14 / ((8*x-1) *(7*x-1)^2 *(6*x-1)^3 *(5*x-1)^4 *(4*x-1)^5 *(3*x-1)^6 *(2*x-1)^7 *(x-1)^8).
a(0) = a(1) = 0, for n>1 a(n) = 8*a(n-1) + (n-1)*A290035(n-2). - Ray Chandler, Jul 21 2017