cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290056 Number of cliques in the n-triangular graph.

Original entry on oeis.org

1, 2, 8, 27, 76, 192, 456, 1045, 2344, 5186, 11364, 24719, 53444, 114948, 246096, 524713, 1114640, 2359942, 4981516, 10486691, 22021196, 46138632, 96470488, 201328317, 419432376, 872417482, 1811941876, 3758099255, 7784631444, 16106130956, 33286000544
Offset: 1

Views

Author

Andrew Howroyd, Jul 19 2017

Keywords

Crossrefs

Cf. A000125 (maximal cliques), A000085 (independent vertex sets), A289837 (tetrahedral graph).

Programs

  • Mathematica
    Table[1 + Binomial[n, 2] + Binomial[n, 3] + (2^(n - 1) - n) n, {n, 20}] (* Eric W. Weisstein, Jul 19 2017 *)
    LinearRecurrence[{8, -26, 44, -41, 20, -4}, {1, 2, 8, 27, 76, 192}, 20] (* Eric W. Weisstein, Jul 19 2017 *)
    CoefficientList[Series[(1 - 6 x + 18 x^2 - 29 x^3 + 21 x^4 - 4 x^5)/((-1 + x)^4 (-1 + 2 x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 19 2017 *)
  • PARI
    a(n) = 1 + binomial(n,2) + (2^(n-1)-n)*n + binomial(n,3);
    
  • PARI
    Vec(x*(1 - 6*x + 18*x^2 - 29*x^3 + 21*x^4 - 4*x^5) / ((1 - x)^4*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Jul 19 2017

Formula

a(n) = 1 + binomial(n,2) + (2^(n-1)-n)*n + binomial(n,3).
a(n) = 8*a(n-1)-26*a(n-2)+44*a(n-3)-41*a(n-4)+20*a(n-5)-4*a(n-6). - Eric W. Weisstein, Jul 29 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 6*x + 18*x^2 - 29*x^3 + 21*x^4 - 4*x^5) / ((1 - x)^4*(1 - 2*x)^2).
a(n) = (6 + (-1+3*2^n)*n - 6*n^2 + n^3) / 6.
(End)