A290056 Number of cliques in the n-triangular graph.
1, 2, 8, 27, 76, 192, 456, 1045, 2344, 5186, 11364, 24719, 53444, 114948, 246096, 524713, 1114640, 2359942, 4981516, 10486691, 22021196, 46138632, 96470488, 201328317, 419432376, 872417482, 1811941876, 3758099255, 7784631444, 16106130956, 33286000544
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- Index entries for linear recurrences with constant coefficients, signature (8,-26,44,-41,20,-4).
Crossrefs
Programs
-
Mathematica
Table[1 + Binomial[n, 2] + Binomial[n, 3] + (2^(n - 1) - n) n, {n, 20}] (* Eric W. Weisstein, Jul 19 2017 *) LinearRecurrence[{8, -26, 44, -41, 20, -4}, {1, 2, 8, 27, 76, 192}, 20] (* Eric W. Weisstein, Jul 19 2017 *) CoefficientList[Series[(1 - 6 x + 18 x^2 - 29 x^3 + 21 x^4 - 4 x^5)/((-1 + x)^4 (-1 + 2 x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 19 2017 *)
-
PARI
a(n) = 1 + binomial(n,2) + (2^(n-1)-n)*n + binomial(n,3);
-
PARI
Vec(x*(1 - 6*x + 18*x^2 - 29*x^3 + 21*x^4 - 4*x^5) / ((1 - x)^4*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Jul 19 2017
Formula
a(n) = 1 + binomial(n,2) + (2^(n-1)-n)*n + binomial(n,3).
a(n) = 8*a(n-1)-26*a(n-2)+44*a(n-3)-41*a(n-4)+20*a(n-5)-4*a(n-6). - Eric W. Weisstein, Jul 29 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 6*x + 18*x^2 - 29*x^3 + 21*x^4 - 4*x^5) / ((1 - x)^4*(1 - 2*x)^2).
a(n) = (6 + (-1+3*2^n)*n - 6*n^2 + n^3) / 6.
(End)