A290059 a(n) = binomial(2*prime(n)-1, prime(n)-1) where prime(n) is the n-th prime.
3, 10, 126, 1716, 352716, 5200300, 1166803110, 17672631900, 4116715363800, 15033633249770520, 232714176627630544, 873065282167813104916, 212392290424395860814420, 3318776542511877736535400, 812850570172585125274307760, 3136262529306125724764953838760
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..261
- Charles Babbage, Demonstration of a theorem relating to prime numbers, The Edinburgh philosophical journal 1 (1819), p. 46-49.
- Joseph Wolstenholme, On certain properties of prime numbers, The quarterly journal of pure and applied mathematics 5 (1862), p. 35-39.
Programs
-
Maple
seq(binomial(2*ithprime(i)-1,ithprime(i)-1),i=1..16);
-
Mathematica
Array[Function[p, Binomial[2*p - 1, p - 1]]@ Prime@ # &, 16] (* Michael De Vlieger, Jul 19 2017 *) Binomial[2#-1,#-1]&/@Prime[Range[20]] (* Harvey P. Dale, Mar 29 2024 *)
-
PARI
a(n) = my(p=prime(n)); binomial(2*p-1, p-1); \\ Michel Marcus, Jul 19 2017
-
Python
from sympy import prime, binomial def a(n): p=prime(n) return binomial(2*p - 1, p - 1) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017
Formula
log(a(n)) ~ 2*log(2)*n * (log(n) + log(log(n)) - 1). - Vaclav Kotesovec, May 07 2022
Comments