cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290090 a(n) is the number of proper divisors of n that are odious (A000069).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 3, 2, 3, 1, 4, 1, 3, 1, 5, 1, 2, 1, 5, 2, 2, 2, 3, 1, 3, 2, 4, 1, 5, 1, 5, 1, 2, 1, 5, 2, 3, 1, 5, 1, 2, 2, 7, 2, 2, 1, 3, 1, 3, 3, 6, 2, 4, 1, 3, 1, 5, 1, 4, 1, 3, 2, 5, 3, 4, 1, 5, 1, 3, 1, 8, 1, 2, 1, 7, 1, 2, 3, 3, 2, 3, 2, 6, 1, 5, 2, 5, 1, 2, 1, 7, 4, 2, 1, 3, 1, 5, 2, 9, 1, 4, 1, 3, 2, 3, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Comments

If n is odd and k >= 1, then a(2^k*n) = (k+1)*n+k if n is in A000069 and (k+1)*n if n is not in A000069. - Robert Israel, Oct 03 2017

Examples

			For n = 55 whose proper divisors are 1, 5 and 11 (in binary "1", "101" and "1011"), only 1 and 11 have an odd number of 1's in their binary representations, thus a(55) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(t -> convert(convert(t,base,2),`+`)::odd, numtheory:-divisors(n) minus {n})) end proc:
    map(f, [$1..200]); # Robert Israel, Oct 03 2017
  • Mathematica
    Table[DivisorSum[n, 1 &, And[OddQ@ DigitCount[#, 2, 1], # < n] &], {n, 120}] (* Michael De Vlieger, Oct 03 2017 *)
  • PARI
    A290090(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA010060(d).
a(n) = A227872(n) - A010060(n).
a(n) = A007814(A293231(n)).
A000035(a(n)) = A000035(A292257(n)). [Parity-wise equivalent with A292257.]