cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292257 a(n) is the total number of 1's in binary expansion of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 4, 1, 7, 1, 5, 5, 4, 1, 8, 1, 7, 6, 5, 1, 10, 3, 5, 5, 9, 1, 14, 1, 5, 6, 4, 6, 13, 1, 5, 6, 10, 1, 15, 1, 9, 11, 6, 1, 13, 4, 9, 5, 9, 1, 14, 6, 13, 6, 6, 1, 23, 1, 7, 11, 6, 6, 14, 1, 7, 7, 15, 1, 18, 1, 5, 12, 9, 7, 16, 1, 13, 9, 5, 1, 24, 5, 6, 7, 13, 1, 26, 7, 11, 8, 7, 6, 16, 1, 11, 10, 15, 1, 14, 1, 13, 18
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2017

Keywords

Comments

If a(n) == A000120(n), then n is in A175522, if a(n) < A000120(n), then n is in A175524, and if a(n) > A000120(n), then n is in A175526.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DigitCount[#, 2, 1] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
    Table[Total[Flatten[IntegerDigits[#,2]&/@Most[Divisors[n]]]],{n,120}] (* Harvey P. Dale, Oct 11 2024 *)
  • PARI
    A292257(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA000120(d).
a(n) = A093653(n) - A000120(n).
a(n) = A192895(n) + A000120(n).
a(n) = A001222(A293214(n)).
A000035(a(n)) = A000035(A290090(n)). [Parity-wise equivalent with A290090.]

A293231 a(n) = Product_{d|n, dA019565(A193231(d)).

Original entry on oeis.org

1, 2, 2, 12, 2, 36, 2, 120, 6, 60, 2, 5400, 2, 360, 30, 25200, 2, 56700, 2, 21000, 180, 840, 2, 23814000, 10, 504, 630, 50400, 2, 661500, 2, 554400, 420, 132, 300, 392931000, 2, 792, 252, 242550000, 2, 24948000, 2, 2772000, 22050, 1980, 2, 605113740000, 60, 4851000, 66, 3880800, 2, 720373500, 700, 4889808000, 396, 2772, 2, 588305025000, 2, 1848
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A019565, A193231, A290090, A293214, A293232 (rgs-version of this sequence).
Cf. also A001317, A045544, A053576.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ This function from Franklin T. Adams-Watters
    A293231(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A193231(d)))); m; };

Formula

a(n) = Product_{d|n, dA019565(A193231(d)).
For all n >= 1, A007814(a(n)) = A290090(n).
For n = 0..5, a(A001317((2^n)-1)) = A002110((2^n)-1).

A293232 Restricted growth sequence transform of A293231, where A293231(n) = Product_{d|n, dA019565(A193231(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 7, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 23, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 2, 60, 61, 62, 63, 64, 2, 65, 66, 67, 68, 69, 70, 71, 2, 72
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A290090.
Differs from related A293215 for the first time at n=55, where a(55) = 39, while A293215(55) = 28.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ This function from Franklin T. Adams-Watters
    A293231(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A193231(d)))); m; };
    write_to_bfile(1,rgs_transform(vector(65537,n,A293231(n))),"b293232.txt");
Showing 1-3 of 3 results.