A290127 a(n) = (1/5760)*(n + 5)*(15*n^7 + 225*n^6 + 1265*n^5 + 3707*n^4 + 7120*n^3 + 4900*n^2 - 6480*n + 27648).
40, 252, 1457, 6168, 20773, 59279, 149271, 340821, 719187, 1422247, 2663718, 4763315, 8185110, 13585456, 21871946, 34274982, 52433634, 78497574, 115246975, 166232370, 235936571, 329960853, 455237713, 620272619, 835417269, 1113176985, 1468554972, 1919436277
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
This is column 5 of triangle A290053.
Programs
-
Mathematica
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{40,252,1457,6168,20773,59279,149271,340821,719187},30] (* Harvey P. Dale, Jul 17 2024 *)
-
PARI
Vec(x*(40 - 108*x + 629*x^2 - 1233*x^3 + 1585*x^4 - 1306*x^5 + 666*x^6 - 192*x^7 + 24*x^8) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Aug 09 2017
Formula
G.f.: x*(40 - 108*x + 629*x^2 - 1233*x^3 + 1585*x^4 - 1306*x^5 + 666*x^6 - 192*x^7 + 24*x^8) / (1 - x)^9. - Colin Barker, Aug 09 2017