A290135 Numbers that are the sum of two proper prime powers (A246547).
8, 12, 13, 16, 17, 18, 20, 24, 25, 29, 31, 32, 33, 34, 35, 36, 40, 41, 43, 48, 50, 52, 53, 54, 57, 58, 59, 64, 65, 68, 72, 73, 74, 76, 80, 81, 85, 89, 90, 91, 96, 97, 98, 106, 108, 113, 125, 128, 129, 130, 132, 133, 134, 136, 137, 141, 144, 145, 146, 148, 150, 152, 153, 155, 157, 160, 162, 170, 173, 174, 177, 178
Offset: 1
Keywords
Examples
13 is in the sequence because 13 = 2^2 + 3^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= select(isprime, [$2..floor(sqrt(N))]): PP:= {seq(seq(p^j, j=2..floor(log[p](N))),p=P)}: A:= select(`<=`,{seq(seq(PP[i]+PP[j],j=1..i),i=1..nops(PP))},N): sort(convert(A,list)); # Robert Israel, Jul 21 2017
-
Mathematica
nmax = 180; f[x_] := Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] x^k, {k, 1, nmax}]^2; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]
Formula
Exponents in expansion of (Sum_{k>=1} x^A246547(k))^2.
Comments