cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290168 If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.

Original entry on oeis.org

0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0

Views

Author

Keywords

Comments

Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017

Formula

G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022