A290222 Multiset transform of A011782, powers of 2: 1, 2, 4, 8, 16, ...
1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 7, 2, 1, 0, 16, 16, 7, 2, 1, 0, 32, 42, 20, 7, 2, 1, 0, 64, 96, 54, 20, 7, 2, 1, 0, 128, 228, 140, 59, 20, 7, 2, 1, 0, 256, 512, 360, 156, 59, 20, 7, 2, 1, 0, 512, 1160, 888, 422, 162, 59, 20, 7, 2, 1, 0, 1024, 2560, 2168, 1088, 442, 162, 59, 20, 7, 2, 1
Offset: 0
Examples
The triangle starts: 1; 0 1; 0 2 1; 0 4 2 1; 0 8 7 2 1; 0 16 16 7 2 1; 0 32 42 20 7 2 1; 0 64 96 54 20 7 2 1; 0 128 228 140 59 20 7 2 1; 0 256 512 360 156 59 20 7 2 1; 0 512 1160 888 422 162 59 20 7 2 1; 0 1024 2560 2168 1088 442 162 59 20 7 2 1; (...)
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(binomial(2^(i-1)+j-1, j)* b(n-i*j, i-1, p-j), j=0..min(n/i, p))))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Sep 12 2017
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[Binomial[2^(i - 1) + j - 1, j] b[n - i j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
Formula
G.f.: 1 / Product_{j>=1} (1-y*x^j)^(2^(j-1)). - Alois P. Heinz, Sep 18 2017
Comments