cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290222 Multiset transform of A011782, powers of 2: 1, 2, 4, 8, 16, ...

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 7, 2, 1, 0, 16, 16, 7, 2, 1, 0, 32, 42, 20, 7, 2, 1, 0, 64, 96, 54, 20, 7, 2, 1, 0, 128, 228, 140, 59, 20, 7, 2, 1, 0, 256, 512, 360, 156, 59, 20, 7, 2, 1, 0, 512, 1160, 888, 422, 162, 59, 20, 7, 2, 1, 0, 1024, 2560, 2168, 1088, 442, 162, 59, 20, 7, 2, 1
Offset: 0

Views

Author

M. F. Hasler, Jul 24 2017

Keywords

Comments

T(n,k) is the number of multisets of exactly k binary words with a total of n letters and each word beginning with 1. T(4,2) = 7: {1,100}, {1,101}, {1,110}, {1,111}, {10,10}, {10,11}, {11,11}. - Alois P. Heinz, Sep 18 2017

Examples

			The triangle starts:
1;
0    1;
0    2    1;
0    4    2    1;
0    8    7    2    1;
0   16   16    7    2   1;
0   32   42   20    7   2   1;
0   64   96   54   20   7   2  1;
0  128  228  140   59  20   7  2  1;
0  256  512  360  156  59  20  7  2  1;
0  512 1160  888  422 162  59 20  7  2  1;
0 1024 2560 2168 1088 442 162 59 20  7  2  1;
(...)
		

Crossrefs

Cf. A034691 (row sums), A000007 (column k=0), A011782 (column k=1), A178945(n-1) (column k=2).
The reverse of the n-th row converges to A034899.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(binomial(2^(i-1)+j-1, j)*
             b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 12 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[Binomial[2^(i - 1) + j - 1, j] b[n - i j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

G.f.: 1 / Product_{j>=1} (1-y*x^j)^(2^(j-1)). - Alois P. Heinz, Sep 18 2017