A290262 Irregular triangle read by rows: rows give the (negated) nonzero coefficients of t in each term of the inverse power product expansion of 1 - t * x/(1-x).
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 2, 1, 3, 5, 5, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 5, 14, 25, 30, 24, 12, 3, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1, 2, 2, 1; 1, 2, 2, 1; 1, 3, 4, 2; 1, 3, 5, 5, 3, 1; 1, 4, 9, 13, 13, 9, 4, 1; 1, 4, 9, 13, 13, 9, 4, 1; 1, 5, 14, 25, 30, 24, 12, 3; 1, 5, 15, 30, 42, 42, 30, 15, 5, 1; 1, 6, 21, 48, 75, 81, 60, 30, 10, 2;
Programs
-
Mathematica
eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@y],{y,Rest[IntegerPartitions[n]]}],n]; eptrans[a_][n_]:=Sum[(-1)^Count[tree,_List,{0,Infinity}]*Product[a[i],{i,Flatten[{tree}]}],{tree,eptrees[n]}]; Table[DeleteCases[CoefficientList[-eptrans[-t&][n],t],0],{n,12}]
Comments