cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290281 Numbers k such that (k-1) mod phi(k) = lambda(k), where phi = A000010 and lambda = A002322.

Original entry on oeis.org

6601, 11972017, 34657141, 67902031, 139952671, 258634741, 2000436751, 8801128801, 9116583841, 9462932431, 38069223721, 326170416001, 359316634951, 1860929324101, 2022188518351, 2283475947391, 2648686458601, 2697891108151, 4513362899761, 5020030521001, 5472940991761, 6163867710001, 7507903975951, 19288340548471
Offset: 1

Views

Author

Robert Israel and Thomas Ordowski, Jul 25 2017

Keywords

Comments

Numbers k such that A215486(k) = A002322(k).
Subsequence of the Carmichael numbers (A002997).
Composite numbers k such that (k-1) == lambda(k) (mod phi(k)).
Composite numbers k such that A277127(k) == 1 (mod A000010(k)).
Problem: are there infinitely many such numbers?
Conjecture: these are numbers k such that phi(k) + lambda(k) = k - 1. Checked up to 2^64. - Amiram Eldar and Thomas Ordowski, Dec 06 2019

Crossrefs

Subsequence of A264012.

Programs

  • Maple
    # Using data files for A002997
    count:= 0:
    for cfile in ["carmichael-16","carmichael17","carmichael18"] do
    do
        S:= readline(cfile);
        if S = 0 then break fi;
        L:= map(parse, StringTools:-Split(S));
        n:= L[1]; pm:= map(`-`,L[2..-1],1);
        phin:= convert(pm,`*`);
        lambdan:= ilcm(op(pm));
        if n-1 - lambdan mod phin = 0 then
          count:= count+1; A[count]:= n;
        fi
    od:
       fclose(cfile);
    od:
    seq(A[i],i=1..count); # Robert Israel, Jul 26 2017
  • Mathematica
    Select[Range[10^8], Divisible[# - 1, (lam = CarmichaelLambda[#])] && Mod[# - 1, EulerPhi[#]] == lam &] (* Amiram Eldar, Dec 06 2019 *)