A290281 Numbers k such that (k-1) mod phi(k) = lambda(k), where phi = A000010 and lambda = A002322.
6601, 11972017, 34657141, 67902031, 139952671, 258634741, 2000436751, 8801128801, 9116583841, 9462932431, 38069223721, 326170416001, 359316634951, 1860929324101, 2022188518351, 2283475947391, 2648686458601, 2697891108151, 4513362899761, 5020030521001, 5472940991761, 6163867710001, 7507903975951, 19288340548471
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..239 (terms below 10^22 calculated using data from Claude Goutier; terms 1..79 from Robert Israel)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Index entries for sequences related to Carmichael numbers.
Programs
-
Maple
# Using data files for A002997 count:= 0: for cfile in ["carmichael-16","carmichael17","carmichael18"] do do S:= readline(cfile); if S = 0 then break fi; L:= map(parse, StringTools:-Split(S)); n:= L[1]; pm:= map(`-`,L[2..-1],1); phin:= convert(pm,`*`); lambdan:= ilcm(op(pm)); if n-1 - lambdan mod phin = 0 then count:= count+1; A[count]:= n; fi od: fclose(cfile); od: seq(A[i],i=1..count); # Robert Israel, Jul 26 2017
-
Mathematica
Select[Range[10^8], Divisible[# - 1, (lam = CarmichaelLambda[#])] && Mod[# - 1, EulerPhi[#]] == lam &] (* Amiram Eldar, Dec 06 2019 *)
Comments