A290283 Primes p such that A215458(p) is prime.
3, 5, 7, 11, 17, 19, 23, 101, 107, 109, 113, 163, 283, 311, 331, 347, 359, 701, 1153, 1597, 1621, 2063, 2437, 2909, 3319, 6011, 12829, 46147, 46471, 74219, 112297, 128411, 178693, 223759, 268841, 407821, 526763, 925391, 927763
Offset: 1
Examples
A215458(3) = 7, A215458(5) = 11, A215458 (7) = 71 are all primes, hence 3, 5, 7 are in this sequence.
Crossrefs
Cf. A215458.
Programs
-
Maple
h := proc(n) option remember; `if`(n=0,2,`if`(n=1,1,h(n-1)-2*h(n-2))) end: select(n->isprime((2^n-h(n)+1)/2),select(isprime,[$1..1000])); # Peter Luschny, Jul 26 2017
-
Mathematica
Function[s, Keys@ KeySelect[s, AllTrue[{#, Lookup[s, #]}, PrimeQ] &]]@ MapIndexed[First[#2] - 1 -> #1 &, LinearRecurrence[{4, -7, 8, -4}, {0, 1, 4, 7}, 7000]] (* Michael De Vlieger, Jul 26 2017 *)
-
PARI
isprime(([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[0; 1; 4; 7])[1, 1])
Comments