cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290336 Number of minimal dominating sets in the n-prism graph.

Original entry on oeis.org

11, 12, 37, 55, 149, 316, 596, 1219, 2444, 4971, 10103, 20465, 41746, 84924, 172501, 350668, 712597, 1448447, 2943959, 5983344, 12162310, 24720787, 50246512, 102129655, 207584129, 421928981, 857596064, 1743117100, 3543000201, 7201373724, 14637255611
Offset: 3

Views

Author

Eric W. Weisstein, Jul 27 2017

Keywords

Comments

The prism graphs are defined for n>=3. If the sequence is extended to n=1 using P_n X P_2 then a(1)=2 and a(2)=6 (as A290379). The empirical recurrence is the same as that for the Moebius ladder graph (see A290337). - Andrew Howroyd, Aug 01 2017

Crossrefs

Formula

Empirical: a(n) = a(n-1)+a(n-2)+2*a(n-3) -a(n-4)+2*a(n-5)-2*a(n-6) +6*a(n-7)+4*a(n-8)+4*a(n-9) -6*a(n-10)-3*a(n-12) +5*a(n-13)-a(n-14)-2*a(n-15) -5*a(n-16)-2*a(n-17)-2*a(n-18) for n > 20. - Andrew Howroyd, Aug 01 2017
Empirical g.f.: x^3*(11 + x + 14*x^2 - 16*x^3 + 44*x^4 + 28*x^5 + 56*x^6 - 52*x^7 - 6*x^8 - 70*x^9 + 52*x^10 - 28*x^11 - 23*x^12 - 97*x^13 - 56*x^14 - 62*x^15 - 12*x^16 - 8*x^17) / ((1 - x)*(1 + 2*x^4 + x^6)*(1 - x^2 - 3*x^3 - 4*x^4 - 4*x^5 - x^6 - 2*x^7 - 3*x^8 - 5*x^9 - 4*x^10 - 2*x^11)). - Colin Barker, Aug 02 2017

Extensions

Terms a(9) and beyond from Andrew Howroyd, Aug 01 2017