A290337 Number of minimal dominating sets in the n-Moebius ladder.
2, 4, 11, 28, 37, 67, 149, 284, 596, 1179, 2444, 5023, 10103, 20577, 41746, 84860, 172501, 350392, 712597, 1448463, 2943959, 5983960, 12162310, 24721031, 50246512, 102128407, 207584129, 421927877, 857596064, 1743119352, 3543000201, 7201377180, 14637255611
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Moebius Ladder
Formula
Empirical: a(n) = a(n-1)+a(n-2)+2*a(n-3) -a(n-4)+2*a(n-5)-2*a(n-6) +6*a(n-7)+4*a(n-8)+4*a(n-9) -6*a(n-10)-3*a(n-12) +5*a(n-13)-a(n-14)-2*a(n-15) -5*a(n-16)-2*a(n-17)-2*a(n-18) for n > 18. - Andrew Howroyd, Aug 01 2017
Empirical g.f.: x*(2 + 2*x + 5*x^2 + 9*x^3 - 8*x^4 - 20*x^5 - 4*x^6 - 4*x^7 - 40*x^9 - 26*x^10 - 26*x^11 + 14*x^12 - 22*x^13 - 33*x^14 - 45*x^15 - 14*x^16 - 14*x^17) / ((1 - x)*(1 + 2*x^4 + x^6)*(1 - x^2 - 3*x^3 - 4*x^4 - 4*x^5 - x^6 - 2*x^7 - 3*x^8 - 5*x^9 - 4*x^10 - 2*x^11)). - Colin Barker, Aug 02 2017
Extensions
a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 01 2017