cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A290351 Euler transform of the Bell numbers (A000110).

Original entry on oeis.org

1, 1, 3, 8, 26, 88, 340, 1411, 6417, 31474, 166242, 939646, 5659613, 36158227, 244049562, 1733702757, 12919475840, 100690425442, 818554392962, 6924577964036, 60828588178031, 553821749290234, 5217264062756556, 50776256646839085, 509823607380230570
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_]:=b[n]=If[n==0, 1, Sum[b[n - j] Binomial[n - 1, j - 1], {j, n}]]; a[n_]:=a[n]=If[n==0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}] a[n - j], {j, n}]/n]; Table[a[n], {n, 0, 50}] (* Indranil Ghosh, Jul 28 2017, after Maple code *)

A305852 Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).

Original entry on oeis.org

1, 1, 3, 16, 91, 658, 5567, 54917, 620081, 7905592, 112382245, 1762646331, 30231516786, 562750751610, 11297034281595, 243241826522376, 5591075279423398, 136633359995403580, 3537193288612096901, 96697587673174195740, 2783492094736121087958
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
        Sum[g[n - j] Binomial[n, j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0,
        Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1+x^k)^A000670(k).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019

A007003 Euler transform of numbers of preferential arrangements.

Original entry on oeis.org

1, 2, 5, 19, 97, 658, 5458, 53628, 606871, 7766312, 110811174, 1743359979, 29972475254, 558940415943, 11235765584497, 242168565186139, 5570683131749362, 136215122718876230, 3527978807819506487, 96480528944412962039, 2778048842021042988465
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: f:= proc(n) option remember; local k; if n<=1 then 1 else add(binomial(n, k) *f(n-k), k=1..n) fi end: aa:= etr(k->f(k-1)): a:= n->aa(n+1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; f[n_] := f[n] = If[n <= 1, 1, Sum[Binomial[n, k]*f[n-k], {k, 1, n}]]; aa := etr[f[#-1]&]; a[n_] := aa[n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! / (2*(log(2))^(n+1)). - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Sep 08 2008
Showing 1-3 of 3 results.