cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290354 a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 2, 6, 30, 170, 1337, 12166, 133476, 1676364, 23970089, 383172262, 6783362586, 131697494825, 2783238819896, 63605879539200, 1563127601683456, 41107799958703376, 1151957989511106438, 34268629198432285436, 1078577860182473404134, 35809701458658690462644
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

a(n) is also the number of unlabeled rooted trees with exactly n leaves, all in level n. a(3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o

Crossrefs

Main diagonal of A290353.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, n], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

a(n) = A290353(n,n).
Conjecture: a(n) ~ c * 2^n * n^(n-4/3) / Pi^n, where c = 4.4923... - Vaclav Kotesovec, Aug 14 2017