A290372 10-adic integer x = ...5807 satisfying x^5 = x.
7, 0, 8, 5, 9, 2, 6, 6, 6, 1, 8, 5, 3, 0, 0, 7, 4, 8, 1, 1, 4, 2, 6, 8, 7, 8, 7, 3, 2, 4, 1, 6, 1, 5, 1, 1, 5, 4, 5, 0, 2, 2, 9, 0, 6, 9, 2, 1, 7, 4, 7, 2, 2, 2, 2, 1, 7, 5, 8, 7, 8, 5, 2, 4, 8, 0, 6, 9, 6, 4, 4, 8, 5, 8, 3, 0, 8, 6, 5, 2, 5, 0, 6, 6, 9, 9, 1, 5
Offset: 0
Examples
7^5 - 7 == 0 mod 10, 7^5 - 7 == 0 mod 10^2, 807^5 - 807 == 0 mod 10^3, 5807^5 - 5807 == 0 mod 10^4. From _Seiichi Manyama_, Aug 01 2019: (Start) 2^(5^0) - 5^(2^0) == 7 mod 10, 2^(5^1) - 5^(2^1) == 7 mod 10^2, 2^(5^2) - 5^(2^2) == 807 mod 10^3, 2^(5^3) - 5^(2^3) == 5807 mod 10^4. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..9999
Programs
-
Ruby
def P(n) s1, s2 = 2, 8 n.times{|i| m = 10 ** (i + 1) (0..9).each{|j| k1, k2 = j * m + s1, (9 - j) * m + s2 if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0 s1, s2 = k1, k2 break end } } s1 end def Q(s, n) n.times{|i| m = 10 ** (i + 1) (0..9).each{|j| k = j * m + s if (k ** 2 - k) % (m * 10) == 0 s = k break end } } s end def A290372(n) str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse (0..n).map{|i| str[i].to_i} end p A290372(100)
Comments