cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290374 10-adic integer x = ...7057 satisfying x^5 = x.

Original entry on oeis.org

7, 5, 0, 7, 7, 0, 2, 9, 0, 8, 1, 4, 3, 2, 5, 9, 5, 3, 6, 9, 1, 7, 1, 8, 7, 2, 0, 7, 3, 6, 9, 6, 1, 3, 3, 3, 7, 3, 3, 2, 8, 6, 5, 5, 4, 6, 7, 9, 1, 6, 8, 3, 2, 2, 4, 3, 3, 3, 1, 5, 0, 2, 4, 3, 0, 1, 9, 2, 0, 9, 6, 9, 5, 6, 1, 0, 0, 7, 2, 0, 4, 6, 6, 2, 9, 3, 5, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2017

Keywords

Comments

Also x^2 = A091661.

Examples

			     7^5 -    7 == 0 mod 10,
    57^5 -   57 == 0 mod 10^2,
    57^5 -   57 == 0 mod 10^3,
  7057^5 - 7057 == 0 mod 10^4.
From _Seiichi Manyama_, Aug 01 2019: (Start)
  2^(5^0) + 5^(2^0) ==    7 mod 10,
  2^(5^1) + 5^(2^1) ==   57 mod 10^2,
  2^(5^2) + 5^(2^2) ==   57 mod 10^3,
  2^(5^3) + 5^(2^3) == 7057 mod 10^4. (End)
		

Crossrefs

x^5 = x: A120817 (...6432), A120818 (...3568), A290372 (...5807), A290373 (...2943), this sequence (...7057), A290375 (...4193).

Programs

  • Ruby
    def P(n)
      s1, s2 = 2, 8
      n.times{|i|
        m = 10 ** (i + 1)
        (0..9).each{|j|
          k1, k2 = j * m + s1, (9 - j) * m + s2
          if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
            s1, s2 = k1, k2
            break
          end
        }
      }
      s1
    end
    def Q(s, n)
      n.times{|i|
        m = 10 ** (i + 1)
        (0..9).each{|j|
          k = j * m + s
          if (k ** 2 - k) % (m * 10) == 0
            s = k
            break
          end
        }
      }
      s
    end
    def A290374(n)
      str = (P(n) + Q(5, n)).to_s.reverse
      (0..n).map{|i| str[i].to_i}
    end
    p A290374(100)

Formula

p = A120817 = ...186432, q = A018247 = ...890625, x = p + q = ...077057.