A290384 Number of ordered set partitions of [n] such that the smallest element of each block is odd.
1, 1, 1, 3, 5, 23, 57, 355, 1165, 9135, 37313, 352667, 1723605, 19063207, 108468169, 1374019539, 8920711325, 127336119839, 928899673425, 14751357906571, 119445766884325, 2088674728868631, 18588486479073881, 354892573941671363, 3443175067395538605
Offset: 0
Keywords
Examples
a(3) = 3: 123, 12|3, 3|12. a(4) = 5: 1234, 124|3, 3|124, 12|34, 34|12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..494
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, m!, add(b(n-1, max(m, j), 1-t), j=1..m+1-t)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..30);
-
Mathematica
b[n_, m_, t_]:=b[n, m, t]=If[n==0, m!, Sum[b[n - 1, Max[m, j], 1 - t], {j, m + 1 - t}]]; Table[b[n, 0, 0], {n, 0, 50}] (* Indranil Ghosh, Jul 30 2017 *)
-
PARI
{ A290384(n) = (n==0) + sum(m=0,n, sum(k=1,m+1, stirling(m,k-1,2)*(k-1)! * stirling(n-m,k,2)*k! * (-1)^(m+k+1))); } \\ Max Alekseyev, Sep 28 2021
-
PARI
{ A290384(n) = polcoef(1 + sum(k=1,n, (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k) + O(x^(n+1)) ), n); } \\ Max Alekseyev, Sep 23 2021
Formula
For n>=1, a(n) = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * S(m,k-1) * (k-1)! * S(n-m,k) * k! = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * A019538(m,k-1) * A019538(n-m,k). - Max Alekseyev, Sep 28 2021
G.f.: 1 + Sum_{k >= 1} (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k). - Max Alekseyev, Sep 23 2021
Comments