cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290434 Semiprimes of the form pq such that p+q+1 is prime.

Original entry on oeis.org

4, 9, 21, 25, 35, 39, 55, 57, 65, 77, 85, 111, 115, 121, 129, 155, 161, 185, 187, 201, 203, 205, 209, 221, 235, 237, 265, 291, 299, 305, 309, 319, 323, 327, 335, 341, 365, 371, 377, 381, 391, 413, 415, 437, 451, 485, 489, 493, 497, 505, 515, 517, 529, 535, 579
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2017

Keywords

Comments

4 is the only even term.

Examples

			377 = 13*29 and 13+29+1 is prime, so 377 is a term.
		

Crossrefs

Cf. A001358.

Programs

  • Mathematica
    With[{nn = 55}, Take[#, nn] &@ Union@ Flatten@ Table[Function[p, Map[Times @@ # &@ # &, #] &@ Select[Map[{p, #} &, Prime@ Range[PrimePi@ p]], PrimeQ[Total@ # + 1] &]]@ Prime@ n, {n, nn + 4}]] (* Michael De Vlieger, Aug 01 2017 *)
    Select[Range[600],PrimeOmega[#]==2&&PrimeQ[Total[Times@@@ FactorInteger[ #]]+1]&] (* Harvey P. Dale, Sep 25 2019 *)
  • PARI
    isok(n) = {if (bigomega(n) == 2, f = factor(n); if (#f~ == 1, isprime(2*f[1,1]+1), isprime(vecsum(f[,1]+1))););} \\ Michel Marcus, Aug 02 2017
  • Python
    from sympy import factorint, isprime
    A290434_list = [n for n in range(2,10**5) if sum(factorint(n).values()) == 2 and isprime(1+sum(factorint(n).keys())*(3-len(factorint(n))))]