A290467 Unitary half-Zumkeller numbers: numbers k whose unitary proper divisors can be partitioned into two disjoint sets whose sums are equal.
6, 12, 20, 30, 42, 56, 60, 66, 70, 72, 78, 84, 90, 102, 114, 120, 138, 150, 168, 174, 180, 186, 210, 220, 222, 240, 246, 252, 258, 272, 280, 282, 294, 318, 330, 354, 360, 364, 366, 390, 402, 420, 426, 438, 440, 462, 474, 498, 510, 520, 532, 534, 546, 560, 570, 582, 606, 618
Offset: 1
Keywords
Examples
The set of unitary proper divisors of 12 is {1,3,4}. It can be partitioned into two disjoint subsets with equal sums of elements: {1,3} and {4}, therefore 12 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bhabesh Das, On unitary Zumkeller numbers, Notes on Number Theory and Discrete Mathematics, Vol. 30, No. 2 (2024), pp. 436-442.
- Eric Weisstein's World of Mathematics, Unitary Divisor Function.
- Wikipedia, Unitary divisor.
Programs
-
Mathematica
uPropDiv[n_/;n>1]:=Block[{d=Most[Divisors[n]]},Select[d,GCD[#,n/#]==1&]];uhZNQ[n_]:=Module[{d=uPropDiv[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];Select[Range[10^3],uhZNQ] (* combined from the code by Robert G. Wilson v at A034448 and T. D. Noe at A083207 *)
Comments