cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290470 Number of minimal edge covers in the n-Moebius ladder.

Original entry on oeis.org

3, 7, 15, 59, 143, 367, 1039, 2755, 7395, 20007, 53727, 144635, 389535, 1048159, 2821535, 7595267, 20443523, 55029319, 148125295, 398712379, 1073232175, 2888862159, 7776059055, 20931132355, 56341155043, 151655701607, 408217663167, 1098815603707, 2957725352255
Offset: 1

Views

Author

Eric W. Weisstein, Aug 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 Cos[n Pi/2] - RootSum[-1 + # + #^2 + #^3 &, #^n &] +
      RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, #^n &], {n, 20}]
    LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {3, 7, 15, 59, 143, 367, 1039, 2755, 7395}, 20]
    CoefficientList[Series[-(((1 + x) (-3 - x - x^2 + x^3) (-1 - 4 x^3 + 3 x^4))/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
  • PARI
    Vec((1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)) + O(x^30)) \\ Andrew Howroyd, Aug 04 2017

Formula

From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)).
(End)

Extensions

a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 04 2017