A290513 Number of irredundant sets in the n-ladder graph.
3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232, 995003, 2843014, 8123337, 23210809, 66320216, 189496620, 541448364, 1547079580, 4420468031, 12630596045, 36089381477, 103118131368, 294639269914, 841872308017, 2405480380385, 6873175192304
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Ladder Graph
- Index entries for linear recurrences with constant coefficients, signature (2, 1, 3, 5, -2, -6, -5, -4, -4, -3, -2, -2).
Crossrefs
Cf. A286868 (irredundant sets in m X n grid graph).
Programs
-
Mathematica
Table[RootSum[2 + 2 # + 3 #^2 + 4 #^3 + 4 #^4 + 5 #^5 + 6 #^6 + 2 #^7 - 5 #^8 - 3 #^9 - #^10 - 2 #^11 + #^12 &, -105577159431355949 #^n - 389671420034091247 #^(n + 1) + 29241021604101932 #^(n + 2) + 551171239538727862 #^(n + 3) - 835076245333578054 #^(n + 4) - 823168743731791895 #^(n + 5) + 1288188291747539683 #^(n + 6) + 114497498217658607 #^(n + 7) - 529545500369064866 #^(n + 8) + 763912087212707104 #^(n + 9) - 593709228550713556 #^(n + 10) + 130400048784652699 #^(n + 11) &]/2485579507903393779, {n, 20}] (* Eric W. Weisstein, Aug 05 2017 *) LinearRecurrence[{2, 1, 3, 5, -2, -6, -5, -4, -4, -3, -2, -2}, {3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232}, 20] (* Eric W. Weisstein, Aug 05 2017 *) CoefficientList[Series[(3 + 5 x + x^2 + 7 x^3 - 8 x^4 - 14 x^5 - 3 x^6 - 5 x^7 - 9 x^8 - 3 x^9 - 2 x^10 - 2 x^11)/(1 - 2 x - x^2 - 3 x^3 - 5 x^4 + 2 x^5 + 6 x^6 + 5 x^7 + 4 x^8 + 4 x^9 + 3 x^10 + 2 x^11 + 2 x^12), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 05 2017 *)
-
PARI
Vec((3+5*x+x^2+7*x^3-8*x^4-14*x^5-3*x^6-5*x^7-9*x^8-3*x^9-2*x^10-2*x^11)/(1-2*x-x^2-3*x^3-5*x^4+2*x^5+6*x^6+5*x^7+4*x^8+4*x^9+3*x^10+2*x^11+2*x^12)+O(x^30)) \\ Andrew Howroyd, Aug 04 2017
Formula
From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = 2*a(n-1) + a(n-2) + 3*a(n-3) + 5*a(n-4) - 2*a(n-5) - 6*a(n-6) - 5*a(n-7) - 4*a(n-8) - 4*a(n-9) - 3*a(n-10) - 2*a(n-11) - 2*a(n-12).
G.f.: x*(3 + 5*x + x^2 + 7*x^3 - 8*x^4 - 14*x^5 - 3*x^6 - 5*x^7 - 9*x^8 - 3*x^9 - 2*x^10 - 2*x^11) / (1 - 2*x - x^2 - 3*x^3 - 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 4*x^8 + 4*x^9 + 3*x^10 + 2*x^11 + 2*x^12).
(End)
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 04 2017
Comments