cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290513 Number of irredundant sets in the n-ladder graph.

Original entry on oeis.org

3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232, 995003, 2843014, 8123337, 23210809, 66320216, 189496620, 541448364, 1547079580, 4420468031, 12630596045, 36089381477, 103118131368, 294639269914, 841872308017, 2405480380385, 6873175192304
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2017

Keywords

Comments

Row 2 of A286868.

Crossrefs

Cf. A286868 (irredundant sets in m X n grid graph).

Programs

  • Mathematica
    Table[RootSum[2 + 2 # + 3 #^2 + 4 #^3 + 4 #^4 + 5 #^5 + 6 #^6 + 2 #^7 - 5 #^8 - 3 #^9 - #^10 - 2 #^11 + #^12 &, -105577159431355949 #^n - 389671420034091247 #^(n + 1) + 29241021604101932 #^(n + 2) + 551171239538727862 #^(n + 3) - 835076245333578054 #^(n + 4) - 823168743731791895 #^(n + 5) + 1288188291747539683 #^(n + 6) + 114497498217658607 #^(n + 7) - 529545500369064866 #^(n + 8) + 763912087212707104 #^(n + 9) - 593709228550713556 #^(n + 10) + 130400048784652699 #^(n + 11) &]/2485579507903393779, {n, 20}] (* Eric W. Weisstein, Aug 05 2017 *)
    LinearRecurrence[{2, 1, 3, 5, -2, -6, -5, -4, -4, -3, -2, -2}, {3, 11, 26, 79, 224, 640, 1828, 5225, 14928, 42654, 121873, 348232}, 20] (* Eric W. Weisstein, Aug 05 2017 *)
    CoefficientList[Series[(3 + 5 x + x^2 + 7 x^3 - 8 x^4 - 14 x^5 - 3 x^6 - 5 x^7 - 9 x^8 - 3 x^9 - 2 x^10 - 2 x^11)/(1 - 2 x - x^2 - 3 x^3 - 5 x^4 + 2 x^5 + 6 x^6 + 5 x^7 + 4 x^8 + 4 x^9 + 3 x^10 + 2 x^11 + 2 x^12), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 05 2017 *)
  • PARI
    Vec((3+5*x+x^2+7*x^3-8*x^4-14*x^5-3*x^6-5*x^7-9*x^8-3*x^9-2*x^10-2*x^11)/(1-2*x-x^2-3*x^3-5*x^4+2*x^5+6*x^6+5*x^7+4*x^8+4*x^9+3*x^10+2*x^11+2*x^12)+O(x^30)) \\ Andrew Howroyd, Aug 04 2017

Formula

From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = 2*a(n-1) + a(n-2) + 3*a(n-3) + 5*a(n-4) - 2*a(n-5) - 6*a(n-6) - 5*a(n-7) - 4*a(n-8) - 4*a(n-9) - 3*a(n-10) - 2*a(n-11) - 2*a(n-12).
G.f.: x*(3 + 5*x + x^2 + 7*x^3 - 8*x^4 - 14*x^5 - 3*x^6 - 5*x^7 - 9*x^8 - 3*x^9 - 2*x^10 - 2*x^11) / (1 - 2*x - x^2 - 3*x^3 - 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 4*x^8 + 4*x^9 + 3*x^10 + 2*x^11 + 2*x^12).
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 04 2017